
1

Instructor: Huaicheng Li

Oct 18 2022



2

q Concurrency bugs

q What types of bugs are there?
§ Deadlocks
§ Non-deadlocks

Source: Lu’08



3

Thread 1:

if (thd->proc_info) {
fputs(thd->proc_info, ...);

}

Thread 2:

thd->proc_info = NULL;

q What types are these?
§ Atomicity-Violation Bugs



4

Thread 1:
pthread_mutex_lock(&proc_info_lock);
if (thd->proc_info) {

fputs(thd->proc_info, ...);
}
pthread_mutex_unlock(&proc_info_lock);

Thread 2:
pthread_mutex_lock(&proc_info_lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&proc_info_lock);

q What types are these?
§ Atomicity-Violation Bugs

pthread_mutex_t proc_info_lock =
PTHREAD_MUTEX_INITIALIZER;



5

Thread 1:
void init () {

mThread = PR_CreateThread(mMain, ...);
}

Thread 2:
void mMain(...) {

mState = mThread->State;
}

q What types are these?
§ Atomicity-Violation Bugs
§ Order-Violation Bugs



6Thread 1:
void init () {

mThread = PR_CreateThread(mMain, ...);
ç

mtInit = 1;
pthread_cond_signal(&mtCond);
pthread_mutex_unlock(&mtLock);

}

Thread 2:
void mMain(...) {
pthread_mutex_lock(&mtLock);
while (mtInit == 0)

pthread_cond_wait(&mtCond, &mtLock);
pthread_mutex_unlock(&mtLock);

mState = mThread->State;
}

q What types are these?
§ Atomicity-Violation Bugs
§ Order-Violation Bugs



7

q Thread perspective
§ A condition in which one or more related threads are blocked waiting for an 

event that will never occur because the blocked threads would be the ones to 
cause it.

q Resource perspective
§ Threads are blocked waiting for resources that will never be granted because 

they are held by threads currently requesting resources.

q Resource contention or lack of communication / signaling



8

q An example

Thread 1:
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);

Thread 2:
pthread_mutex_lock(L2);
pthread_mutex_lock(L1);

Typical for deadlock is that

(a) threads cannot make forward progress
(b) threads cannot easily back out



9

q In large code bases, complex dependencies arise ...
§ e.g., Linux: mm <-> fs

q Nature of encapsulation (for modularity)
§ e.g., Seemingly innocuous interfaces almost invite you to deadlock

Thread 1:

v1.AddAll(v2);

Java Vector class: Vector v1, v2;

Thread 2:

v2.AddAll(v1);



10



11



12

q Mutual exclusion:
§ Threads claim exclusive control of resources that they require (e.g., a thread 

grabs a lock).

q Hold-and-wait: 
§ Threads hold resources allocated to them (e.g., locks that they have already 

acquired) while waiting for additional resources (e.g., locks that they wish to 
acquire).

q No preemption: 
§ Resources (e.g., locks) cannot be forcibly removed from threads that are holding 

them.

q Circular wait: 
§ There exists a circular chain of threads such that each thread holds one or more 

resources (e.g., locks) that are being requested by the next thread in the chain.



13

q Deadlock recovery
§ e.g., after the fact
§ Preempt access to resource (if possible)
§ Back process up: expensive, require checkpointing and/or transactions
§ Kill involved processes/threads until deadlock is resolved (Very tricky)
§ Kill all processes/threads involved
§ Reboot ...

q Deadlock prevention
§ e.g., remove one of the necessary conditions
§ Deadlock cannot occur if one of the necessary conditions is removed

q Deadlock avoidance
§ e.g., adopt a strategy if none of the necessary conditions can be removed
§ Not practical, only therectial



14

q Circular Wait
§ Write your locking code to avoid circular wait
§ Total ordering on lock acqusition (e.g., always lock(L1) before lock(L2))
§ Partial ordering 

- Document locking order, (e.g., Linux mm code)
- Create a partial order of all resources that may be held simultaneously - e.g., by taking their

addresses; example: C++17 std::scoped lock

§ Both total and partial ordering require careful design of locking strategies and 
must be constructed with great care



15

q Hold-and-wait
§ How about acquiring all locks at once, atomically

- No thread switch happening in the midst of lock acquisition

§ Unfortunately, solution is problematic ...
- Encapsulation (against us): we must know beforehand which locks to acquire
- Coarse granualarity, static vs. on-demand, decreased concurrency

pthread_mutex_lock(prevention); // begin
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);
...
pthread_mutex_unlock(prevention); // end



16

q No Preemption
§ Preempt access to resource - difficult to write code that is robust in the presence of 

such preemption
§ A relaxed lock acquisition: pthread_mutex_trylock()

- If lock available, grab the lock, return success
- Else, returns an error code indicating lock held by others

§ However, one new problem arise: livelock
- e.g., 2 threads executing the same trylock logics, repeatedly, but no progress ...
- Possible fix: add random delay before looping back
- Even so, it’s not a “preemption” of locks, rather gracefully to allow developer to back out

top:
pthread_mutex_lock(L1);
if (pthread_mutex_trylock(L2) != 0) {

pthread_mutex_unlock(L1);
goto top;

}



17

q Mutal Exclusion
§ Lock-free data structures!

- Use hardware instructions to build structures requiring no explicit locking ...

int CompareAndSwap(int *addr, int expected, int new) {
if (*addr == expected) {

*addr = new;
return 1; // success

return 0; // failure
}



18

q Mutal Exclusion
§ Lock-free data structures!

- Use hardware instructions to build structures requiring no explicit locking ...

int CompareAndSwap(int *addr, int expected, int new) {
if (*addr == expected) {

*addr = new;
return 1; // success

return 0; // failure
}

int AtomicIncrement(int *val, int amount)
do {

int old = *val;
} while (CompareAndSwap(value, old, old + amount) == 0);

}



19

q Mutal Exclusion
§ Lock-free data structures!

- Use hardware instructions to build structures requiring no explicit locking ...

void insert(int val) {
nod_t *n = malloc(sizeof(node_t);
assert(n);
n->value = val;
pthread_mutex_lock(listlock); // begin
n->next = head;
head – n;
pthread_mutex_unlock(listlock); // end

}

void insert(int val) {
nod_t *n = malloc(sizeof(node_t);
assert(n);
n->value = val;
do {

n->next = head;
} while (CompareAndSwap(&head, 

n->next, n) == 0);
}



20

Bad Good



21

q Minimize likelihood of deadlock by applying prevention strategies 
wherever possible:
§ avoid unnecessarily fine-grained locking (share a lock)
§ define locking order if not possible
§ use tools that flag when locking order is violated
§ have clear signaling strategies

q Allow for deadlock recovery
§ Design system to minimize the amount of work that is lost or must be repeated if 

deadlock recovery necessitates killing of processes



22

SIGOPS OS Review, 37(1):54-64, Jan 2003



23

q Deadlock is a state where a set of threads is blocked waiting for a 
resource or event that could be produced only by a thread in the set

q For reusable resources, can be analyzed with a resource allocation graph

q Employ strategies for
§ Deadlock Detection & Recovery
§ Deadlock Prevention

q In general, risk of deadlock increases with finer granularity of locking: 
scalability vs robustness trade-off


