CS 3214: Computer Systems
Lecture | 7: Concurrency Bugs

Instructor: Huaicheng Li

Oct 18 2022

7

VIRGINIA TECH.

Concurrency Problems

a Concurrency bugs

0 What types of bugs are there!?

» Deadlocks
= Non-deadlocks

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice Office Suite 6 2
Total 74 31

Source: Lu’08

Non-Deadlock Bugs

Thread I:
0 What types are these!?
= Atomicity-Violation Bugs if (thd->proc_info) {
fputs(thd->proc_info, ...);
}
Thread 2:

thd->proc_info = NULL;

Non-Deadlock Bugs
) pthread_mutex_t proc_info_lock =
QO What types are these? PTHREAD_MUTEX_INITIALIZER:

= Atomicity-Violation Bugs
Thread I:

pthread_mutex_lock(&proc_info_lock);
if (thd->proc_info) {
fputs(thd->proc_info, ...);

}

pthread_mutex_unlock(&proc_info_lock);

Thread 2:
pthread_mutex_lock(&proc_info_lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&proc_info_lock);

Non-Deadlock Bugs

0 What types are these!?

= Atomicity-Violation Bugs
Thread I:

void init () {
mThread = PR_CreateThread(mMain, ...);
}

" Order-Violation Bugs

Thread 2:
void mMain(...) {
mState = mThread->State;

}

Non-Deadlock Bugs

0 What types are these!?
= Atomicity-Violation Bugs
* Order-Violation Bugs

Thread I:
void init () {
mThread = PR_CreateThread(mMain, ...);
¢
mtlnit = [;
pthread_cond_signal(&mtCond);
pthread_mutex_unlock(&mtLock);

}

Thread 2:
void mMain(...) {
pthread_mutex_lock(&mtLock);
while (mtlnit == 0)
pthread_cond_wait(&mtCond, &mtLock);
pthread_mutex_unlock(&mtLock);
mState = mThread->State;

}

Deadlock

0O Thread perspective

= A condition in which one or more related threads are blocked waiting for an
event that will never occur because the blocked threads would be the ones to
cause it.

0O Resource perspective

" Threads are blocked waiting for resources that will never be granted because
they are held by threads currently requesting resources.

O Resource contention or lack of communication / signaling

Deadlocks

O An example

Thread I: Thread 2:

pthread_mutex_lock(Ll); pthread_mutex_lock(L2);
pthread_mutex_lock(L2); = pthread_mutex_lock(LI);

Typical for deadlock is that

(a) threads cannot make forward progress
(b) threads cannot easily back out

Why Do Deadlocks Occur?

Q In large code bases, complex dependencies arise ...
" e.g., Linux: mm <->fs

O Nature of encapsulation (for modularity)
= e.g., Seemingly innocuous interfaces almost invite you to deadlock

Java Vector class: Vector vl, v2;

Thread I: Thread 2:

vI.AddAll(v2); v2.AddAll(vl);

Wanted by

Lock L2

Holds
—

—
Holds

Lock L1

Aq pajuepp

10

Resource Deadlock Detection

@ Will focus on deadlocks involving reusable
resources (e.g., mutexes)

@ Reliable after-the-fact deadlock detection requires
access to resource allocation graph:

o Nodes are either processes or resources with 2 types of e e e e
edges

@ From resource R; to process Py: process Py holds

R, R,

resource R; R m
@ From process Py to resource R;: process Py is trying to 2
acquire resource R; Resource Allocation Graph
@ In practice, finding this graph can be difficult, R - P Assignment
Cy : P - R Request
though some debuggers provide it, e.g. Windows

[URL]

Figure 2: Resource Allocation
Graph

12

Conditions for Deadlock

Q Mutual exclusion:

" Threads claim exclusive control of resources that they require (e.g., a thread
grabs a lock).

O Hold-and-wait:

* Threads hold resources allocated to them (e.g., locks that they have already
acquired) while waiting for additional resources (e.g., locks that they wish to
acquire).

0 No preemption:

= Resources (e.g., locks) cannot be forcibly removed from threads that are holding
them.

a Circular wait:

» There exists a circular chain of threads such that each thread holds one or more
resources (e.g., locks) that are being requested by the next thread in the chain.

13

Strategies for Dealing with Deadlocks

0O Deadlock recovery
" e.g., after the fact
Preempt access to resource (if possible)
Back process up: expensive, require checkpointing and/or transactions
Kill involved processes/threads until deadlock is resolved (Very tricky)

Kill all processes/threads involved
= Reboot ...

0O Deadlock prevention
" e.g., remove one of the necessary conditions
* Deadlock cannot occur if one of the necessary conditions is removed

O Deadlock avoidance

" e.g.,adopt a strategy if none of the necessary conditions can be removed
" Not practical, only therectial

Deadlock Prevention

Q Circular Wait

Write your locking code to avoid circular wait
Total ordering on lock acqusition (e.g., always lock(L 1) before lock(L2))
Partial ordering

- Document locking order, (e.g., Linux mm code)

- Create a partial order of all resources that may be held simultaneously - e.g., by taking their
addresses; example: C++ 17 std::scoped lock

Both total and partial ordering require careful design of locking strategies and
must be constructed with great care

14

Deadlock Prevention

Q Hold-and-wait
" How about acquiring all locks at once, atomically
- No thread switch happening in the midst of lock acquisition

= Unfortunately, solution is problematic ...
- Encapsulation (against us): we must know beforehand which locks to acquire
- Coarse granualarity, static vs. on-demand, decreased concurrency

pthread_mutex_lock(prevention); // begin
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);

pthread_mutex_unlock(prevention); // end

15

Deadlock Prevention

O No Preemption

* Preempt access to resource - difficult to write code that is robust in the presence of
such preemption

= A relaxed lock acquisition: pthread _mutex_trylock()
- If lock available, grab the lock, return success
- Else, returns an error code indicating lock held by others

" However, one new problem arise: livelock
- e.g., 2 threads executing the same trylock logics, repeatedly, but no progress ...
- Possible fix: add random delay before looping back
- Even so, it’s not a “preemption” of locks, rather gracefully to allow developer to back out

top:

pthread_mutex_lock(L1);

if (pthread_mutex_trylock(L2) != 0) {
pthread_mutex_unlock(L1);
goto top;

}

16

Deadlock Prevention

Q Mutal Exclusion

* Lock-free data structures!
- Use hardware instructions to build structures requiring no explicit locking ...

int CompareAndSwap(int *addr, int expected, int new) {
if (*addr == expected) {
*addr = new;
return |;// success

return 0; // failure

}

17

Deadlock Prevention

Q Mutal Exclusion

» | ock-free data structures!
- Use hardware instructions to build structures requiring no explicit locking ...

int CompareAndSwap(int *addr, int expected, int new) {
if (*addr == expected) {
*addr = new;
return |;// success

return 0; // failure

}

int Atomiclncrement(int *val, int amount)
do {
int old = *val;
} while (CompareAndSwap(value, old, old + amount) == 0);

}

18

19

Deadlock Prevention

Q Mutal Exclusion

» | ock-free data structures!
- Use hardware instructions to build structures requiring no explicit locking ...

void insert(int val) {

nod_t *n = malloc(sizeof(node_t); nod_t *n = malloc(sizeof(node_t);
assert(n); assert(n);

n->value = val; n->value = val;
pthread_mutex_lock(listlock); // begin do {

n->next = head; n->next = head;
head — n; } while (CompareAndSwap(&head,

pthread_mutex_unlock(listlock); // end n->next, n) == 0);

void insert(int val) {

Deadlock Avaoidance via Scheduling

T1 T2 T3 T4
L1 yes yes no no
L2 yes yes yes no

CPU 1 T4

Bad Good

CPU 1
CPU 2

20

Practical Strategies

O Minimize likelihood of deadlock by applying prevention strategies
wherever possible:

" avoid unnecessarily fine-grained locking (share a lock)
» define locking order if not possible

= use tools that flag when locking order is violated
" have clear signaling strategies
QO Allow for deadlock recovery

= Design system to minimize the amount of work that is lost or must be repeated if
deadlock recovery necessitates killing of processes

21

Deadlock vs. Starvation

Apparent lack of progress that could be fixed with a proper scheduling strategy:

@ Strict priority scheduler might starve lower priority thread if higher priority
threads are always READY

@ Reader-writer locks may assign lock to only readers, starving writers

Deadlock

There is no scheduling policy that would allow forward progress

See Levine [2] for an attempt to extend the definition of deadlock to other lack of

progress states SIGOPS OS ReVieW, 37(I):54'64,Jan 2003 S

22

23

0O Deadlock is a state where a set of threads is blocked waiting for a
resource or event that could be produced only by a thread in the set

0 For reusable resources, can be analyzed with a resource allocation graph

0 Employ strategies for
" Deadlock Detection & Recovery
" Deadlock Prevention

Q In general, risk of deadlock increases with finer granularity of locking:
scalability vs robustness trade-off

