CS 3214: Computer Systems
Lecture | 6: Condition Variable

Instructor: Huaicheng Li

Oct 13 2022

7

VIRGINIA TECH.

Recap

Q Lock
O Semaphore

Q A need for proper “wait()”

void *child(void *arg) {
printf(“child\n”);
/* how to indicate we are done? */
return NULL;

}

int main(int argc, char *argv[]) {
printf(“parent: begin\n”);
pthread_tc;
pthread create(&c, NULL, child, NULL);
/* how to wait for child? */
printf(“parent: end\n”);
return 0;

Method #1: A Spin-based Approach

0 Does it work? volatile int done = 0;
, . . void *child(void *arg) {
Q Is it a good implementation? orintf(“child\n”);
= Busy-waiting (spinning) wastes CPU /* how to indicate we are done?! */
cycles done = I;
return NULL;
}

int main(int argc, char *argv[]) {

v printf(“parent: begin\n”);
pthread_t c;

pthread_create(&c, NULL, child, NULL);
Instead of spinning, can we figure out a way /* how to wait for child? */

to wait for the done flag to be set true!? while (done == 0) ; I* spin */
e.g., sleeping and then waking up ... printf(“parent: end\n”);
return 0;

Condition Variable

Q Definition:
= A condition variable is a queue of sleeping threads
" When condition not true, threads can put them to sleep on the queue
* When condition becomes true, wake up thread(s) from the queue

Q APlIs
» Declaration: pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;
* Wait() operation: pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m)

- Assume lock m locked when wait() is called
- Wait() releases the lock, put the calling thread to sleep

* Wake-up / Signal() operation: pthread_cond_signal(pthread_cond_t *c)
- Signal() must re-acquire the lock before returning to the caller

Method #2: Condition Variable based Waiting

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER,;
pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;

void *child(void *arg) { int main(int argc, char *argvl[]) {
printf(“child\n”); printf(“parent: begin\n”);
[* how to indicate we are done? */ pthread_t ¢;
pthread_mutx_lock(&m); pthread create(&c, NULL, child, NULL);
pthread_cond_signal(&c); /* how to wait for child? */
pthread_mutex_unlock(&m); pthread_mutex_lock(&m);
return NULL; pthread_cond_wait(&c, &m);
} pthread_mutex_unlock(&m);
printf(“parent: end\n”);
return O;
}

What could go wrong with this code!

Method #2: Condition Variable based Waiting

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER,;
pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;

void *child(void *arg) { int main(int argc, char *argvl[]) {
printf(“child\n”); printf(“parent: begin\n”);
[* how to indicate we are done? */ pthread_t ¢;
pthread_mutx_lock(&m); pthread create(&c, NULL, child, NULL);
pthread_cond_signal(&c); /* how to wait for child? */
pthread_mutex_unlock(&m); pthread_mutex_lock(&m);
return NULL; pthread_cond_wait(&c, &m);
} pthread_mutex_unlock(&m);
printf(“parent: end\n”);
return O;
}

Problem:What if child()’s critical section runs before main()’s?

Method #4: Condition Variable based Waiting

pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;

int done = 0;
void *child(void *arg) { int main(int argc, char *argvl[]) {
printf(“child\n”); printf(“parent: begin\n”);
[* how to indicate we are done? */ pthread_t c;
done = I; pthread create(&c, NULL, child, NULL);
pthread_cond_signal(&c); /* how to wait for child? */
return NULL; if (done == 0)
} pthread_cond_wait(&c, NULL);
printf(“parent: end\n”);
return O;

Problem:A subtle race condition! Always hold the lock for wait()/signal()!

Method #5: Condition Variable based Waiting

int done = 0;

Pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER,;

Pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER,;

void *child(void *arg) { int main(int argc, char *argv[]) {
orintf(““child\n”): printf(“parent: begin\n”);
/* how to indicate we are done? */ pthread_t ; ,

thread_mutx_lock(&m): pthread create(&c, NULL, child, NULL);

Zone _ . ’ [* how to wait for child? */

pthread_cond_signal(&c); pthread_mutex_lock(&m);

pthread_mutex_unlock(&m); Wh;ieth(i(:]’;e C:;) :)wait(&c, &m);
return NULL, . 0 : ,

pthread_mutex_unlock(&m);
printf(“parent: end\n”);
return O;

The Producer/Consumer Problem

0 Also known as bounded buffer problem, uses cases like
" e.g.,web servers
= e.g., pipe (“grep foo file.txt | wc —I”)

Q Problem Statement
= A buffer, limited size
"= One or more producer threads: add items to the tail of the buffer
= One or more consumer threads: consume items from the head of the buffer

= Correct behaviors
- Producers can only add new items when buffer not full
- Consumer can only consume items when buffer not empty
- Producers won’t add new items to the same location of the buffer
- Consumers won’t consume the same item from the same buffer location

Producer/Consumer

int buffer;
int count = 0; /* initially empty */

void put(int value) {
assert(count == 0);
count = |;
buffer = value;

}

int get() {
assert(count == |);

count = 0;
return buffer;

}

void *producer(void *arg) {

}

int i;

int loops = (int)arg;

for (i = 0;i < loops; i++) {
put(i);

}

void *consumer(void *arg) {

}

while (1) {

int tmp = get();
printf(“%d\n”, tmp);
}

10

11

Producer/Consumer Threads (#1)

pthread cond_t cond;
pthread _mutex_t mutex;

void *consumer(void *arg) {

void *producer(void *arg) { int i;
int i; for (i = 0;i < loops; i++) {
for (i = 0;i < loops; i++) { pthread_mutex_lock(&mutex);
pthread_mutex_lock(&mutex); if (count == 0)
if (count == [) . pthread_cond_wait(&cond, &mutex);
pthread_cond_wait(&cond, &mutex); int tmp = get();
put(i); pthread_cond_signal(&cond);
pthread_cond_signal(&cond); pthread_mutex_unlock(&mutex);
pthread_mutex_unlock(&mutex); printf(“%d\n”, tmp);
})
})

Does it work for | producer + | consumer?

How about more than | producers/consumers? e.g., | producer and 2 consumers

0O Reasons why the previous code fails

= the state of the bounded buffer changed betwee
- signal() from the producer, and
- the actually running of the first consumer

= signal() is just a hint to wake up a sleeping thread, but doesn’t guarantee when a
thread runs, the state remains the same ... (Mesa semantics, de-facto)

12

13

Producer/Consumer Threads (#2)

pthread cond_t cond;

pthread_mutex_t mutex; void *consumer(void *arg) {

int i;
for (i = 0;i < loops; i++) {
pthread_mutex_lock(&mutex);
while (count == 0)
pthread_cond_wait(&cond, &mutex);
int tmp = get();
pthread_cond_signal(&cond);

void *producer(void *arg) {
int i;
for (i = 0;i < loops; i++) {
pthread_mutex_lock(&mutex);
while (count == |)
pthread_cond_wait(&cond, &mutex);

g:htr(;)(;d cond_signal(&cond); pthread_mutex_unlock(&mutex);
— _ ’ . tf “%d\ ”,t ;
pthread_mutex_unlock(&mutex); | printf(*7%d\n”, tmp)
} }

}

Always safe to use “while” to check status change with cond. var.!

|IEEE Std. 1003.1

When using condition variables there is always a Boolean predicate
involving shared variables associated with each condition wait that is true
if the thread should proceed. Spurious wakeups from the

pthread cond_timedwait () or pthread_cond_wait() functions may
occur. Since the return from pthread cond timedwait () or
pthread cond wait () does not imply anything about the value of this
predicate, the predicate should be re-evaluated upon such return.

POSIX.1 2008

An added benefit of allowing spurious wakeups is that applications are
forced to code a predicate-testing-loop around the condition wait. This
also makes the application tolerate superfluous condition broadcasts or
signals on the same condition variable that may be coded in some other
part of the application. The resulting applications are thus more robust.
Therefore, POSIX.1-2008 explicitly documents that spurious wakeups may
occur.

| A\

N,

14

15

Producer/Consumer Threads (#2)

pthread cond_t cond;

pthread_mutex_t mutex; void *consumer(void *arg) {

int i;
for (i = 0;i < loops; i++) {
pthread_mutex_lock(&mutex);
while (count == 0)
pthread_cond_wait(&cond, &mutex);
int tmp = get();
pthread_cond_signal(&cond);

void *producer(void *arg) {
int i;
for (i = 0;i < loops; i++) {
pthread_mutex_lock(&mutex);
while (count == |)
pthread_cond_wait(&cond, &mutex);

z:htr(;)(;d cond_signal(&cond); pthread_mutex_unlock(&mutex);
— —) . tf “%d\ ”,t ;
pthread_mutex_unlock(&mutex); | printf(*%d\n”, tmp)
} }

}

But the code above is still problematic! Related to the single cond. var.

Producer/Consumer Threads (#3)

pthread_cond_t empty, fill;
pthread _mutex_t mutex;

void *producer(void *arg) {
int i;
for (i = 0;i < loops; i++) {
pthread_mutex_lock(&mutex);
while (count == |)

pthread_cond_wait(&empty, &mutex);

put(i);
pthread_cond_signal(&fill);
pthread_mutex_unlock(&mutex);

void *consumer(void *arg) {
int i;
for (i = 0;i < loops; i++) {
pthread_mutex_lock(&mutex);
while (count == 0)

pthread_cond_wait(&fill, &mutex);

int tmp = get();
pthread_cond_signal(&empty);
pthread_mutex_unlock(&mutex);
printf(“%d\n”, tmp);

16

Producer/Consumer Threads (#4)

buffer[MAX

Generalized ...

producer

pthread_mutex_lock

pthread_cond_wait
put
pthread_cond_signal
pthread_mutex_unlock

consumer

pthread_mutex_lock

pthread_cond_wait
get
pthread_cond_signal
pthread_mutex_unlock
printf

Signal() and Broadcast()

a Signal() doesn’t specify which sleeping thread to wake up

0 And it might end up waking up the wrong thread ...

int bytesLeft = MAX_HEAP_SIZE;
pthread cont_t c;
pthread _mutex_t m;
void *allocate(int size) {
pthread mutex_lock(&m);
while (bytesLeft < size)
pthread cond_wait(&c, &m);
void *ptr = ...;// get mem from heap
bytesLeft -= size;
pthread mutex_unlock(&m);)
return ptr;

void free(void *ptr, int size) {
pthread mutex_lock(&m);
bytesLeft += size;
pthread cond_signal(&c); // who to signal()
pthread mutex_unlock(&m);

