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Application-level Concurrency

O The need to pursue multiple, concurrent computations simultaneously within a
process besides process-level concurrency ...

0 Parallelization: exploit multi-cores for fast parallel task executions

0 Multiplexing of I/O and computation
= CPU is fast, I/O is slow
= Wasteful for CPUs to wait for I/Os

0 Foreground and background activities

= E.g.,VSCode: handle your inputs in the foreground, downloading updates in the
background

= Many other GUI applications

0 Handle multiple clients
*= E.g,network server



A New Abstraction - Threads

0 Multiple threads of execution within one process

0 Each thread has separate logical flows of control

0 Each thread is part of the hosting process, but with some of its own
private context

= Share code, data, kernel context

* Thread’s individual stack for local variables (not protected from other threads)
» Each thread has its own thread id (TID)



Quick Recap: Process

0 Process = process context +

Program context: Stack
Data registers Shared libraries
Condition codes
Stack pointer (SP) Run-time heap
Program counter (PC) Read/write data
Kernel context: Read-only code/data

VM structures
Descriptor table
brk pointer



A Single-Threaded Process

Thread (main thread) Code, data, and kernel context

Stack Shared libraries

Thread context: Run-time heap
Data registers Read/write data

Condition codes Read-only code/data

Stack pointer (SP)
Program counter (PC)

Kernel context:

VM structures
Descriptor table

brk pointer



A Multi-Threaded Process

Code, data, and kernel context

Thread (main thread) Peer Thread
Shared libraries
Stack- | Stack-2
Run-time heap
Thread context: Thread context: e il dare
Data registers Data registers
- de/d
Condition codes Condition codes Read-only code/data
Stack pointer (SP) Stack pointer (SP)
Program counter (PC) Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer



Logical View of Threads

QO Threads are peers to each other

0 Processes are organized in hierarchies (parent/child)
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Thread Scheduling/Concurrency

0O Two threads are concurrent if their flows overlap in time

0O Otherwise, sequential



Threads vs Processes

Q Similarities
= Each has its own logical control flow
= Each can run concurrently with others (e.g., on different cores)
= Each is context switched

a Differences

" Threads share all code and data (except local stacks)
- Processes (typically) do not
" Threads are more lightweight than processes
- Process control (creation/destroy) 2x as expensive as thread control
- E.g., on Linux
* ~20K cycles to create and release a process
* ~|10K cycles (or less) to create and reap a thread



Posix Threads (Pthreads)

0 Standard interface for thread management, ~60 functions
» De facto standard for Unix-like OS, specified in IEEE Std.1003.10-2017

0 Creation and reaping threz #include <pthread.n>
int
u pthread_create() pthread_create (pthread_t *thread,
const pthread_attr_t xattr,

u Pthread_jOin() void % (xstart_routine) (voidx),

void *arg) ;

Q Get thread ID
= pthread_self()

0O Terminating threads
= pthread_cancel()
= pthread_exit()

0 Synchronization primitives on shared variables
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Thread Example & Execution

void *thread(void *arg);

int main()

{

pthread _t tid;
pthread create(&tid, NULL, thread, NULL);
pthread_join(tid, NULL);

return O;

void *thread(void *arg)

{

printf(‘“Hello, world!\n”);
return NULL;

}
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Beyond Pthreads

QO Does the ability to maintain multiple flows of control require
support from the underlying OS kernel?

QO Can it be implemented purely using libraries, etc. using non-
privileged instructions and other facilities at user-level?
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Cooperative Multi-Threading (User-Level)

a

It’s possible to maintain multiple control flows entirely without kernel level
support

Exists in multiple variants in different languages, known as coroutines or
user-level threads depending on variant

Requires a primitive that saves & restores execution state

Non-preemptive model: threads’ access to the CPU is not preempted (taken
away) unless the thread yields access to the CPU voluntarily

Yield may be directed (saying which coroutine should run next) or undirected
(run something else next), e.g. uthreads example

In some higher-level languages, functions can “yield” temporary results as their
execution state is saved and restored (e.g., Python yield)

Can be combined with asynchronous I/O: yield a promise object that represents
an in-progress operation: async/await
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Cooperative Multi-Threading

Q Pros
= No OS support required
" Very lightweight, fast context switch
= Absence of certain data races, e.g. at++ atomic
» Scalable when combined with async I/Os

a Cons
* No multi-core parallelism
= No explicit preemption (causing starvation)
* Blocking I/O system calls will block the entire process
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Kernel-supported Threads

Q Parallelism (yes!)
O Scheduling threads like processes, process states

Q Preemption (yes!)
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Hybrid Models
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Hybrid Models (cont)

O Pure user-level threading uses a |:N model (N user-level threads share |
OS-level thread)

O Pure kernel-level threading uses a |:1 model (I OS thread for each user
thread)

O Hybrids (M:N) models try to obtain the best of user-level and kernel-
supported
threads.

O Examples:Windows Fibers, (now defunct) Solaris M:N model
Increase in complexity (and lack of payoff) led to the M:N model being
largely
abandoned.

O Heavy investment/optimization in reducing the costs of the |:I model, e.g.
fast
user-level synchronization facilities



Threads Downsides

0 Too Easy to share resources (?)
* Not much control over scheduling
= Difficult to debug (ordering unpredictable)
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Concurrency Management

O Applications rarely create separate, new threads for individual tasks,
particularly if small

O Instead, they manage the number of threads needed to perform work and
distribute work to threads

O Trade-off:

* Too many threads: leads to increased contention for resources and resulting
overhead from managing that
* Too few threads: risks underutilization of CPUs/cores

O Target: number of READY + RUNNING threads around equal to number of
cores

Q Solution: thread pools



Pseudocode Source: Lea [1]

Result solve(Param problem) {
if (problem.size <= GRANULARITY_THRESHOLD) {
return directlySolve(problem) ;
} else {
in-parallel {
Result 1 = solve(lefthalf (problem)) ;
Result r = solve(rightHalf (problem) ;
}
return combine(l, r);
}
}

Challenge

An execution framework must map the tasks created in in-parallel to threads.
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Concurrency under Threads

6
7
8
9

static volatile int counter = 0;

// mythread/()
//
// Simply adds 1 to counter repeatedly, in a loop
// No, this is not how you would add 10,000,000 to
// a counter, but it shows the problem nicely.
/7
void xmythread(void xarg) {
printf ("%$s: begin\n", (char =*) arg);

int i;
for (1 = 0; 1 < le7; i++) {
counter = counter + 1;
}
printf ("%$s: done\n", (char *) arqg);

return NULL;
}

// main()

//

// Just launches two threads (pthread_create)

// and then waits for them (pthread_join)

//

int main(int argc, char xargv([]) {
pthread_t pl, p2;
printf("main: begin (counter = %d)\n", counter);
Pthread_create (&pl, NULL, mythread, "A");
Pthread_create (&p2, NULL, mythread, "B");

// Jjoin waits for the threads to finish

Pthread_join(pl, NULL);

Pthread_join(p2, NULL);

printf ("main: done with both (counter = %d)\n",
counter) ;

return 0;
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Concurrency Primitives (Next Lecture)

O Semaphore
0 Mutex
Q Lock

O Conditional Variables

22



