
1

Instructor: Huaicheng Li

Oct 4 2022

2

source1.c: (C source code)
(#include “header1.h”, #include “header2.h”)
….

source1.s
Assembly Code

source1.o
Object Code

source2.s
Assembly Code

source2.o
Object Code

header1.h header2.h header3.h

main (Executable)

Process1

Physically Addressed RAM

Preprocessor

Compiler

Assembler

loader/
dynamic
linkerMMU

Run Time

Load Time

Link Time

Compile Time

other programs

Process2 Process3

Linker

source2.c: (C source code)
(#include “header2.h”, #include “header3.h”)
….

+ static
libraries

+ dynamic libraries

3

q Such as math, string manipulation, etc.

q Write your own “common.c” file, compile it to an object file, and link it
to programs that will use it
§ Time and space inefficient

q One function in each .c file, compile all of them, and choose to link the
ones that’s needed
§ Need to know exactly which one to use/link
§ Burdens on programmers to maintain so many object files

4

q Pack multiple relocatable object files into a single file with an index (a.k.a,
archive)
§ ”.a” archive files
§ “ar rs mylib.a a.o b.o c.o …”

q Example libraries
§ “libc.a” à C standard library (e.g., /usr/lib/x86_64-linux-gnu/libc.a)
§ “libm.a” à C math library

q “ar –t libc.a” à Check all the object files in the library

q “nm –s libc.a” à Check all the symbols in the library

5

q Static Libraries: Pack multiple relocatable object files into a single file
with an index (a.k.a, archive)
§ ”.a” archive files
§ “ar rs mylib.a a.o b.o c.o …”
§ “libc.a” à C standard library, “libm.a” à C math library

- “ar –t libc.a” à Check all the object files in the library

q How does linker resolve dependency?
§ Scan “.o” and “.a” file in the order specified in the command line
§ Keep a list of unresolved symbols
§ For each “.o” or “.a” file, try to resolve unresolved symbols

- If an archive member (.o file) resolves the dependency, link it
§ If still unresolved symbols at the end, error
§ When processing a library, the linker will include a .o module from this library if

and only if it defines a symbol that is currently in set U

6

q Pros:
§ Only needed .o files are included/linked
§ Override a library symbol by specifying a definition in a library that will be listed first
§ Compatibility (w/ all dependencies included)

q Cons:
§ Linking behavior depends on the exact order in which .o files and libraries are listed

on the command line
§ May be necessary to list libraries in a certain order (-lXm –lXt –lX11), or multiple

times if they have mutual dependencies, or use special linker grouping option (--start-
group/--end-group)

§ Duplication in the executable
§ Updates on libraries requires applications to relink
§ Error prone and confusing (but, linker maps help track down how the linker resolved

symbols)
§ Larger size (executable file size, and requires more memory when loaded)
§ No Sharing

7

q Object files that contain code and data are loaded and linked into an application dynamically, at
§ load-time
§ run-time

q Linux: “.so” files, Windows: Dynamic link libraries (DLLs)

q Can be shared by multiple processes
§ Mapped into different virtual addresses within different processes
§ Memory must be read-only and content not be dependent on the position at which it is mapped

q Load-time linking
§ Common case in Linux, handled automatically by the dynamic linker (ld-linux.so)
§ Standard C library (libc.so) usually dynamically linked
§ Executable still contains external references that will be resolved at load-time
§ Recursive: a dynamically linked library may have other dependencies

q Run-time linking
§ dlopen() interface

q Semantics almost the same as static libraries

8

q Position-Independent Code (handles intra-library references)
§ X86_64: PC-relative addressing mode ($rip + offset)

q If a library defines global function f or variable x, the address f and &x
are not known until the library is loaded
§ Indirect function calls (via entries in PLT (Procedure Linkage Table))
§ On-demand loading via trampolines: first access trigger jump into dynamic linker
§ Subsequent jumps go straight to loaded function

q In general ,sahred libraries introduce a marginal cost at runtime

9

q “gcc –shared –o liba.so a.c b.c”

q “gcc –c main.c –o main.o”

q Linker (ld) on main.o and liba.so à Partially linked executable object file
§ Relocation and symbol table information from .so file

q Load executable binary (execve()) and .so into fully linked executable in
memory
§ Need code and data from .so file

10

11

12

q Intercept calls to arbitrary functions
§ Compile-time

- Macro expanded into self-defined function calls

§ Link-time (LD_PRELOAD)
§ Run-time

