CS 3214: Computer Systems
Lecture |3: Linking + Loading (3)

Instructor: Huaicheng Li

Oct 4 2022

7

VIRGINIA TECH.

Compile Time

Run Time

header1.h

header2.h

header3.h

y

y

y

y

sourcel.c: (C source code)
(#include “header1.h”, #include “header2.h”)

source2.c: (C source code)
(#include “header2.h”, #include “header3.h”)

¥ Preprocessor

Physically Addressed RAM

y y ¥ Compiler
sourcel.s source2.s
Assembly Code Assembly Code
¥ Assembler
- - !
sourcel.o source2.0 + static v Linker
Object Code \ Object Code libraries | (..|...
¥ /
_ main (Executable) + dynamic libraries other programs
Y Y |
Process1 Process2 Process3 Ioader/.
- ¥ ¥ v c_iynamlc
YMMU inker

Packing Common Functions

0 Such as math, string manipulation, etc.

O Write your own “common.c” file, compile it to an object file, and link it

to programs that will use it
* Time and space inefficient

QO One function in each .c file, compile all of them, and choose to link the

ones that’s needed
= Need to know exactly which one to use/link
* Burdens on programmers to maintain so many object files

Static Libraries

0 Pack multiple relocatable object files into a single file with an index (a.k.a,
archive)

= 3" archive files
= “ar rs mylib.a a.o b.o c.o ...”

O Example libraries
» “libc.a” = C standard library (e.g., /usr/lib/x86_64-linux-gnu/libc.a)
* “libm.a” = C math library

Q “ar —t libc.a” = Check all the object files in the library

Q “nm —s libc.a” = Check all the symbols in the library

Static Libraries

0 Static Libraries: Pack multiple relocatable object files into a single file
with an index (a.k.a, archive)
= ”.a” archive files

= “ar rs mylib.a a.o b.o c.o ...”
= “libc.a” = C standard library, “libm.a” = C math library
- “ar —t libc.a” = Check all the object files in the library

0 How does linker resolve dependency?
" Scan “.0” and “.a” file in the order specified in the command line
Keep a list of unresolved symbols

For each “.0” or “.a” file, try to resolve unresolved symbols
- If an archive member (.o file) resolves the dependency, link it
If still unresolved symbols at the end, error
When processing a library, the linker will include a .o module from this library if
and only if it defines a symbol that is currently in set U

Static Libraries

Q Pros:

Only needed .o files are included/linked

Override a library symbol by specifying a definition in a library that will be listed first
Compatibility (w/ all dependencies included)

O Cons:

Linking behavior depends on the exact order in which .o files and libraries are listed
on the command line

May be necessary to list libraries in a certain order (-IXm —IXt —IX1 1), or multiple
times if they have mutual dependencies, or use special linker grouping option (--start-
group/--end-group)

Duplication in the executable

Updates on libraries requires applications to relink

Error prone and confusing (but, linker maps help track down how the linker resolved
symbols)

Larger size (executable file size, and requires more memory when loaded)
No Sharing

Shared Libraries

Q

Q

Q

Q

Q

Obiject files that contain code and data are loaded and linked into an application dynamically, at
" |oad-time
" run-time

Linux: “.so” files,Windows: Dynamic link libraries (DLLs)

Can be shared by multiple processes
* Mapped into different virtual addresses within different processes
= Memory must be read-only and content not be dependent on the position at which it is mapped

Load-time linking
= Common case in Linux, handled automatically by the dynamic linker (ld-linux.so)
= Standard C library (libc.so) usually dynamically linked
* Executable still contains external references that will be resolved at load-time
= Recursive:a dynamically linked library may have other dependencies

Run-time linking
* dlopen() interface

Semantics almost the same as static libraries

Implementation of Shared Libraries

Q Position-Independent Code (handles intra-library references)
= X86 64:PC-relative addressing mode ($rip + offset)

Q If a library defines global function f or variable x, the address f and &x
are not known until the library is loaded
" Indirect function calls (via entries in PLT (Procedure Linkage Table))
" On-demand loading via trampolines: first access trigger jump into dynamic linker
= Subsequent jumps go straight to loaded function

Q In general ,sahred libraries introduce a marginal cost at runtime

Dynamic Linking at Load-time

0 “gcc —shared —o liba.so a.c b.c”
0 “gcc —c main.c —o main.o”

Q Linker (Id) on main.o and liba.so = Partially linked executable object file
= Relocation and symbol table information from .so file

O Load executable binary (execve()) and .so into fully linked executable in

memory
» Need code and data from .so file

Dynamic Linking at Run-time

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

void xhandle;
void (*addvec)(int *, int *, int *, int):;
char *error:;

/* Dvnamically load the shared: library that contains addvec() s/

handle = dlopen("./libvector.so", RTLD_LAZY);
if ('handle) {
forintf(stderr, "%s\n", dlerror());
exit(1);

10

/* Get a pointer to the addvec() function we just loaded x/
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {

fprintf(stderr, "%s\n", error);

exit(1);

hy

/* Now we can call addvec() just like any other function x/
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library x/

if (dlclose(handle) < 0) {
forintf(stderr, "%s\n", dlerror());
exit(1);

by

return 0;

11

Library interpositioning

Q Intercept calls to arbitrary functions
= Compile-time
- Macro expanded into self-defined function calls
= Link-time (LD_PRELOAD)
= Run-time

12

