
Linking and Loading - Part II

Godmar Back

Virginia Tech

September 29, 2022

Godmar Back Linking & Loading II 1/10 1 / 10

Software Engineering Aspects

source1.c: (C source code)
(#include “header1.h”, #include “header2.h”)
….

source1.s
Assembly Code

source1.o
Object Code

source2.s
Assembly Code

source2.o
Object Code

header1.h header2.h header3.h

main (Executable)

Process1

Physically Addressed RAM

Preprocessor

Compiler

Assembler

loader/
dynamic
linkerMMU

Run Time

Load Time

Link Time

Compile Time

other programs

Process2 Process3

Linker

source2.c: (C source code)
(#include “header2.h”, #include “header3.h”)
….

+ static
libraries

+ dynamic libraries

Figure 1: Compilation, Linking, and Loading in a typical System

Godmar Back Linking & Loading II 2/10 2 / 10

Local vs Global Symbols

source1.c
static int x;

static void f() {

x = 1;

}

0000000000000000 t f

0000000000000000 b x

source2.c
static int x;

static void f() {

x = 2;

}

0000000000000000 t f

0000000000000000 b x

source3.c
static int x;

static void f() {

x = 3;

}

int main() { }

0000000000000000 t f

0000000000000011 T main

0000000000000000 b x

exe Symbols
0000000000400536 t f

0000000000400547 t f

0000000000400558 t f

0000000000400569 T main

0000000000601020 b x

0000000000601024 b x

0000000000601028 b x

From the linker’s perspective, individual .o files’ symbols are either global or local

Assembly level: default is local; must say .globl otherwise

At the C level: default is global; must say static to make local

Note: different use of local/global than local vs global variables. Here, “local”
means local to a compilation unit, i.e., a .c file (plus headers)

Local symbols in different compilations units are separated and do not
conflict with one another or with global symbols in other units

Godmar Back Linking & Loading II 3/10 3 / 10

Conflict Resolution Rules for Global Symbols

Question: what happens if 2 or more modules define a global symbol with the
same name?

Answer: it depends on whether the symbol is considered “strong” or “weak”
strong + strong → conflict “multiply defined”
strong + weak → weak definition is ignored
weak + weak → one of the weak definitions is used

These rules are a historic quirk (blame Fortran’s COMMON blocks); fortunately,
there is only one case in normal use that makes a symbol weak: defining an
uninitialized global variable, e.g. int x; or struct struct type obj;

This allows for the (questionable) convenience of defining the same global
variable multiple times in different compilation units and have the linker turn the
other way

Godmar Back Linking & Loading II 4/10 4 / 10

Understanding Definitions and Declarations in C

writing is a that defines and sets
Functions

static void f(); declaration of f nothing
static void f() { } definition of f a local symbol f
void g(); declaration of g nothing g an external ref
extern1 void g(); declaration of g nothing g an external ref
void g() { } definition of g a strong global symbol g

Variables
static int v; definition of v a local symbol it to 0
static int w = 42; definition of w a local symbol it to 42
int v; definition of v a weak global symbol it to 0
extern int v; declaration of v nothing v an external ref
int v = 42; definition of v a strong global symbol it to 42

1optional

Godmar Back Linking & Loading II 5/10 5 / 10

Effect of Definitions and Declarations in a Header File

writing error?
Functions

static void f(); maybe makes sense only if defined in same header file
static void f() { } no usually ok when inlining is intended
void g(); no recommended way of declaring global functions
extern2 void g(); no recommended way of declaring global functions
void g() { } multiply-defined strong symbol conflict rule

Variables
static int v; no separate copies of v! Likely wrong.
static int w = 42; no separate copies of w! Likely wrong.
int v; no one copy; fragile
extern int v; no recommended way of declaring a global variable
int v = 42; multiply-defined strong symbol conflict rule

2optional

Godmar Back Linking & Loading II 6/10 6 / 10

Best Practices - Variables

Avoid global variables where possible; but if you must have them:

Do not define global variables in a header file, regardless of static or not
Instead, declare them in exactly one header file (with extern) and choose exactly one .c file
in which to define them (these files often have the same basename, as the module is said to
own them)
Do this regardless of whether an initial value is provided for the variable
C++ even requires this: One Definition Rule

Do not define non-static global variables in a .c file unless they are used in more
than one .c file:

If multiple files define the same name, then strong definitions will conflict, weak definitions
will silently refer to the same copy, as will strong/weak combinations
Make them static instead – maximize encapsulation

-Wl,--warn-common should be quiet

Godmar Back Linking & Loading II 7/10 7 / 10

https://en.wikipedia.org/wiki/One_Definition_Rule

Best Practices - Functions

If not used in more than one .c file, make static and keep in .c file

If used in more than one .c file, place prototype declaration in header file;
enforce this with -Wmissing-prototypes

Do not ignore “implicit declaration” warnings

Choose good naming scheme, such file for functions in file.c

Define small functions you intend for the compiler to inline in header files

Godmar Back Linking & Loading II 8/10 8 / 10

Best Practices - Inline Functions

Inlining: the compiler will insert the body of a function at the call site, avoiding
procedure call overhead and enabling optimizations

Requires that the compiler has access to the source code of the function, thus its
definition in a header file; excessive use would increase compile times

Compiler will decide whether to inline, based on chosen optimization level and
on heuristics

Which modifier should be used?

Option 1: static or static inline. Adding inline is good practice, but
doesn’t sway or force compiler to actually inline.

Option 2: (in C99 or later) (just) inline in a header file, and choose exactly
one compilation unit to add an extern inline declaration.

Option 2 has the advantage that it avoids multiple copies in the case where the
compiler doesn’t inline, but is more complicated and
does not allow header-only libraries

Godmar Back Linking & Loading II 9/10 9 / 10

Conclusion

Discussed best practices for placing declarations and definitions in .c source and
.h header files

Avoid/debug linker errors and fragile practices

Emerging alternatives: whole-program optimization techniques
Link-Time Optimization (LTO): compiler stores intermediate representation in .o files,
optimization and code generation is done at link time on whole program
Concatenating the source code of multiple files (so-called “unity builds”)

Godmar Back Linking & Loading II 10/10 10 / 10

