M

VIRGINIA TECH.

CS 3214: Project 1

The Customizable Shell

Help Session: 09/14/2022

Sam Lightfoot <sabiOdelaluz@vt.edu>
Alex Kyer <makyer19@yvt.edu>

Topics

Shell Concepts

Project Overview / Logistics
Version Control (Git)
Debugging (GDB)

Advice

Q&A

M

VIRGINIA TECH.

Shell Concepts

What is a shell?

e Command Interpreter

o Reads user input and executes user requests
o Not to be confused with a “Terminal” (next slide explains distinction)

TR0 Terminalizer

ccerne@ccerne-ubuntu:~/Documents/VirginiaTechs i

Terminal vs Shell

Terminal (the front-end of our shell) Shell (an executable with no GUI)

ccerne@ccerne-ubuntu: S 1s -1
1s -1
total 16

drwxrwxr-x ccerne ccerne Aug 23 10:37 CTF

7
drwxrwxr-x 6 ccerne ccerne Sep 11 21:42 Programming
5

drwxrwxr-x ccerne ccerne Sep 1 16:56 Programs
drwxrwxr-x 5 ccerne ccerne Sep 13 21:19 VirginiaTech
ccerne@ccerne-ubuntu: $ echo SSHELL
/usr/bin/zsh

Examples: gnome-terminal,
terminator, Terminal.app
(macOS) etc.

This terminal is running zsh, a shell

The 80s called, they want their Terminal
back!

Behind the Scenes

S echo 'Welcome to Systems!'

aa

FOUR STEPS for non-built-in

1. Shell waits for user input

2. Shell interprets command

3. Forks a process

4. If it's a foreground parent waits for
child to finish. Else, parent repeats

the process again.
- Child executes the command

. lelcome to Systems!

Additional Features for the Shell (where you come in)

Foreground / Background Processes
Process Groups

Built-in Commands

I/O Piping

I/O Redirection

Signal Handling

Foreground / Background Processes

e The shell can fork processes into the foreground or background

- Only one foreground process group - Does not have terminal access
at a time - Using ‘& sends command to
- Have access to the terminal background to run

Process Groups

e [Each Job is its own process group
O Each command within a Job should have the same PGID
O Two methodologies of creating new processes:
O Fork
O posix_spawn

e Jobs are deleted when they are completed
O Be careful not to delete a job prematurely
O See the comment above wait_for_job()

<justv@cottonwood justv>=$ ps xJ | head -n 1; ps

(SO SO SOy =

w w ww

Gy Y W

[«)]

P

-
)
3
2
-

D TTY

pts/0
pts/0
pts/0
pts/0

PID PID PGID

")
i |
Y N
oo
(#]

(&3]

(&)
=

[v]

o

w w

(o) B+ I e) B e)]
Vi vounoWw

~J

o o
oo
o0
oo

(]

(2 +))
(@]

w w w o
ww ww
w w w o

el el el
vivouooWw
el el el
())]
w w ww
Vi oo
. ~J

o O

w W

(o]
(#s]
J
o
o
[#4]

Notice the PID and PGID!

TPGID
1365438
1365438
1365438
1365438

X

(P I ¥ I ¥ L

("]

(")]

tail -n 6

T UID
24908
24908
24908
24908

> —

T

TIME

0
0
0
0

:00
:00
:00
:00

COMMAND

/home/

courses/cs3214/bin/cush-gback
20
20
20

POSIX Spawn

e Replaces fork() + exec() entirely

e Code is “linear” rather than handling multiple processes in if-else statements

e Example: posix_spawn(3) - Linux manual page (man7.org)

Note: You need to include “spawn.h” in your cush.c to use these functions.
The file is located in the posix_spawn directory. Also be sure to use the
Makefile and compile posix_spawn.

https://man7.org/linux/man-pages/man3/posix_spawn.3.html

fork() + exec() posiX_spawn()

o (fork() i 9) { posix spawn_file actions t child file attr;
0 aw ~ t child spawn_attr;

posix_spawnattr_int(&child file attr);
posix spawn file actions init(&child file attr);

execvp(/~

posix_spawnp(/*pid*/, ! */, &child file attr,
&child spawn attr, Drog ' , environ)

We recommend using posix_spawn() for this project, but it is not required.

POSIX Spawn Attributes

® Process Groups - posix_spawnattr_getpgroup ()
® Terminal Control - posix_spawnattr_tcsetpgrp_np()

® Piping - posix_spawn_file_actions_adddup2()

More listed on both the spec and <spawn.h>

Built-in Commands

e Commands that are defined within the program by you
o No need to fork off and execute an external program

e Required Built-In Commands for your shell:
kill - kills a process

jobs - displays a list of jobs

stop - stops a process

fg - sends a process to foreground

bg - sends a process to background

exit - exits the shell

e Two additional built-ins / functionality extenders also required

O O O O O

O

Built-ins Behind the Scenes -
FOUR STEPS for built-in

1. Shell waits for user input
2. Shell realizes this is a built in command
3. Shell executes built-in (no forking)

4. After execution, shell repeats

?/ X ? J [1]+ Stopped vim
L %K > Qﬁ @ [2]- Running sleep 20 &
' o e

I/O Piping

1s -1 | grep *.txt | wc

- o

e The Shell will fork off a
child process to execute
each command in a

e But since this is a pipeline
of commands, we’ll also
need to wire STDIN and
STDOUT for each
process.... " >

I/O Piping

e Processes will wait on previous process, final process outputs to terminal
e STDIN and STDOUT for processes are joined to create the pipeline

grep *.txt

{

A

X 2 X 2
k’ ' ;

W \§
\:\%&5’”:: \\\‘_k\&

I ; '
nput Output:
S

1/0 Redirection

o > overwrites original file contents before writing out
o >> appends to the end of contents in file
o < read input from existing file rather than STDIN

I/O Redirection (Output)

echo 'Welcome to Systems!' > output.txt

output.txt

D\

e le1CcOome to Systems! B

TIXT

I/0 Redirection (Input)

aw_

hello.txt
N

Signal Handling

e Shells can handle signals sent to them
o SIGINT (Ctrl + C)

o SIGTSTP (Ctrl + 2)
o SIGCHLD (when a child process terminates)

Handling SIGINT (Ctrl + C)

A S
A B

s

!@ﬁ

4

1. Shell and single child 2. User sends SIGINT (Ctrl +C) 3. Signal sent to foreground 4. Group is forced to terminate,
process (in the foreground) process group shell reacquires terminal control
are running

CTRL +] C
- L

Explanation : https://en.wikipedia.ora/wiki/Process_aroup#Applications

https://en.wikipedia.org/wiki/Process_group#Applications

Handling SIGTSTP (Ctrl + Z)

| B
A Sk B

& -
2

1. Shell and single child 2. User sends SIGTSTP (Ctrl + Z) 3. Signal sent to foreground 4. Group is forced to stop, shell
process (in the foreground) process group reacquires terminal control
are running

CTRL <4 z
- .

Explanation : https://en.wikipedia.ora/wiki/Process_aroup#Applications

https://en.wikipedia.org/wiki/Process_group#Applications

Handling SIGCHLD

s

Y

1. Shell and single child 2. Child process is finished and 3. The shell’s SIGCHLD 4. Shell continues running
process (foreground or terminates - notifies parent by handler code uses info to
background) are running sending SIGCHLD perform any necessary

bookkeeping

Explanation : https://en.wikipedia.ora/wiki/Process_aroup#Applications

https://en.wikipedia.org/wiki/Process_group#Applications

Handling SIGCHLD: WIF* Macros

e When wait* is called it will return a pid and a status for a child process that
changes state. Using macros, we can decode this status to discover what

state a process changed to and how it happened:

o WIFEXITED(status) - did child process exit normally?
o WIFSIGNALED(status) - was child process signaled to terminate?
o WIFSTOPPED(status) - was child process signaled to stop?

Event How to check for it | Additional info Process Process
stopped? | dead?

User stops fg pro- | WIFSTOPPED WSTOPSIG equals | yes no

cess with Ctrl-Z SIGTSTP

User stops process | WIFSTOPPED WSTOPSIG equals | yes no

with kill -STOP SIGSTOP

non-foreground WIFSTOPPED WSTOPSIG equals | yes no

process wants SIGTTOU or SIGT-

terminal access TIN

process exits via | WIFEXITED WEXITSTATUS has | no yes

exit () return code

user terminates pro- | WIFSIGNALED WTERMSIG equals | no yes

cess with Ctrl-C SIGINT

user terminates pro- | WIFSIGNALED WTERMSIG equals | no yes

cess with kill SIGTERM

user terminates pro- | WIFSIGNALED WTERMSIG equals | no yes

cess with kill -9 SIGKILL

process has been | WIFSIGNALED WTERMSIG equals | no yes

terminated (general
case)

signal number

Additional information can be found in the GNU C library manual, available at http://
www.gnu.org/s/libc/manual/html_node/index.html. Read, in particular, the

sections on Signal Handling and Job Control.

M

VIRGINIA TECH.

Project Overview

Requirements and Grading

1.

B

Basic Functionality - 50 pts
a. Start foreground and background jobs
b. Built-in commands : ‘jobs’, ‘fg’, ‘bg’, kill’, ‘stop’
c. Signal Handling (SIGINT, SIGTSTP, SIGCHLD)
Advanced Functionality - 50 pts

a. 1/O Pipes
b. 1/0O Redirection
c. Running programs requiring exclusive terminal access (ex: vim)

Extra Built-ins - 20 pts
Version Control (Git) - 10 pts
Documentation - 10 pts

Total : 140 points

Before You Start Coding

e Take time to read over and comment the starter code
e Read the provided lecture material and Chapter 8 in the textbook

e Understand Exercise 1
o fork() / exec() model
o Piping : pipe(), dup2(), close()
e Check out Dr. Back’s example shell

o Located at ~cs3214/bin/cush-gback in rlogin
o Can be useful for comparing outputs with your shell

Base Code

e Already includes a parser!
e Parser spits out hierarchical data structures

Data Structures

ast command_line

~ast_command_line
| sleep 10 &; echo hi | rev |

~ast_pipeline ~ ast_pipeline
| sleep 10 & | | echo hi | rev |
~ast_command ~ast_command ~ast_command

| sleep 10 | | echo hi | | rev

List Data Structure

e You're also provided with a linked list data structure
o Check out list.h and list.c

e You'll be using this list throughout the semester
e Read through list.c before using it

“Data contains node” vs "Node points to data”

Your Linked List

list_elem {
list_elem * prev;

list_elem * next;

Struct 1 Struct 2

Sentinel —» listelem L .| list elem [——— Sentinel

Retrieve data from a struct list_elem by using the list_entry macro:

ast_ command * cmd = list_entry(e,

ast_command, elem);

A Regular Linked List

class listhode<T> {
T data;

listhode<T> next;

Sentinel F— Node — Node — Sentinel

An example of an element in a list

struct ast_pipeline {
struct list/* <ast_command> */ commands; /* List of commands */
char *iored_input; /* If non-NULL, first command should read from
file 'iored_input' */
char *iored_output; /* If non-NULL, last command should write to

file 'iored_output' */
bool append_to_output; True if user typed >> to append */
bool bg_job; /* True if user entered & */
struct list_elem elem; Link element. */

Adding 1ist elem to a structure allows this
structure to be added to a list

BAD IDEA (

List Pitfalls L Wit etem in 1ia0

, // do stuff
e Don’t:

o Use the same list_elem for multiple lists

o Edit an element while iterating list_remove (currklem);

[Naive loop to remove elements in a list will fail!

o Forget to list_init()

(someCondition)

// valid example: deallocates a pipeline struct and any commands stored in it while iterating
void ast pipeline free(struct ast pipeline *pipe)
{
for (struct list elem * e = list begin(&pipe->commands); e != list end(&pipe->commands);) {
struct ast command *cmd = list entry(e, struct ast command, elem);
e = list remove(e); //Acts as the iterator; stores next element into e
ast command free (cmd) ;
}
free (pipe) ;
} // make sure to remove an ast pipeline from a list before adding it to another!

// bottom line with lists? ALWAYS TEST

Utility Functions (Strongly Recommended)

e Signal Support (signal_support.c / .h)
o signal_block()
o signal_unblock()
o singal_set handler()

e Terminal State Management (termstate_ management.c/ .h)

o termstate _give terminal to()
o termstate_give terminal_back to_shell()
o termstate_restore()

Additional Built-ins and extensions

e Your shell must contain two extra built-ins / functionality extensions
O One high effort and one low effort (bolded is low-effort)

e |deas include:

- Customizable Prompt - Shell Variables

- Setting/unsetting env vars - Directory Stack

- Glob expansion (e.g., *.c) - Command-line history

- Timing commands (ex. time) - Backquote substitution

- Alias support - Smart command-line completion
- Embedded Apps

e Unix Philosophy - implement only functionality that is not already supported
using Unix commands. If you have an idea not shown on the list or have any

doubts please ask us

Testing / Submission

e Please submit code that compiles!
e Test the driver before submitting, don'’t just run tests individually
e \When grading, tests will be ran 3-5 times. If you crash a single time, it's

considered failing

Test Driver

e The driver reads from .tst file that describes a test suite (ex. basic.tst)
o Ex: basic.tst contains a series of test scripts that it will run from the folder /tests/basic

cd src/

..[tests/stdriver.py [options]

*- stdriver.py also available at ~cs3214/bin/stdriver.py

Options:

e -b: basic tests (processes, built-ins, signals)
e -a:advanced tests (I/O Piping, I/O Redirection, exclusive terminal access)
e -h:list all the options

Additional Tests

e You are required to write tests for your two extra built-ins
Create a .tst file in ‘tests’ and create a directory that will store your test scripts

e Inside <custom>.tst file:

O

<custom> Tests

pts <custom>/<test name>.py
pts <custom>/<test name>.py

1
1

Milestone Tests
basic/foreground.py
basic/cmdfail and exit test.py

The driver checks number of total points
(pts) to use for a test. Since this is just your
own custom tests you can put an arbitrary
number here

Additional Tests (Part 2)

e Make sure your custom.tst file is of type “ASCII text”

$ file custom.tst custom.tst: ASCII text

e Ifit includes Windows terminators (CR, CRLF, etc.), see man tr
e \We want \n, not \r\n

Design Document

When you submit you must include
a README.ixt describing your
implementation

TAs will assign credit only for the
functionality for which test cases
and documentation exist

Submission. You must submit a design document, README.txt, as an ASCII document
using the following format to describe your implementation:

Student Information

<Student 1 Information>
<Student 2 Information>

How to execute the shell

<describe how to execute from the command line>

Important Notes

<Any important notes about your system>

Description of Base Functionality

<describe your IMPLEMENTATION of the following commands:
jobs, fg, bg, kill, stop, \°C, \"2 >

Description of Extended Functionality

<describe your IMPLEMENTATION of the following functionality:
I/0, Pipes, Exclusive Access >

List of Additional Builtins Implemented

(Written by Your Team)
<builtin name>
<description>

M

VIRGINIA TECH.

Version Control

Version Control

e You will be using Git for managing your source code
e Why?

Organizes your code

Keeps track of features

Allows collaborators to work freely without messing up other existing code
Back-ups whenever something goes wrong

o O O O

Your Work

Master

Someone Else’s Work

Basic Git Commands

e Stage file for commit:

$ git add <file_name>

e Commit files:

$ git commit -m ‘Add a description here’

e Push changes to remote (note: always pull before push!)

$ git push [origin <branch_name>]

Basic Git Commands

e Fetch changes from remote:

$ git pull

e Check status

$ git status

Setup Git Access

e You'll need an SSH Key to get access to projects at git.cs.vt.edu
e If you don't already have a key...

o Create a new key:

Add an SSH key

$ Ssh_keygen _t rsa _b 4096 _C "ema“@vtedu" \ To add an SSH key you need to generate one or use an existing key.
Key
-f ~/ SSh/|d rsa Paste your public SSH key, which is usually contained in the file '~/.ssh/id_ed25519.pub’ or

'~/.sshfid_rsa.pub’ and begins with ‘ssh-ed25519" or ‘ssh-rsa'. Don't use your private SSH key.

o Add Key to https://qit.cs.vt.edu/profile/keys

m You will paste public key here ----------- >

Title

https://git.cs.vt.edu/profile/keys

Verify Git Access

e \erify you have access
e The first time you connect you will be asked to verify the host, just answer
‘Yes’ to continue

11 spencetk@linden ~ >ssh git@git.cs.vt.edu

PTY allocation request failed on channel 0
Welcome to GitLab, @spencetk! «— Your pid should be displayed here
Connection to git.cs.vt.edu closed.

e You can get in-depth explanations here:
o Generate a key
o Use an existing key

https://git.cs.vt.edu/help/ssh/README#generating-a-new-ssh-key-pair
https://git.cs.vt.edu/help/ssh/README#locating-an-existing-ssh-key-pair

GitLab Project Setup

1.

2.

$ git clone <your git repo url>.git -

IMPORTANT: Set forked repository to private

One member will fork the base repository:

@) https://qit.cs.vt.edu/cs3214-staff/cs3214-cush

{} Settings

General

Invite partner to collaborate
O Go to Settings > Members to add them

O Check partner role permissions too

3. Both members will clone the forked repository

on their machines:

Go to Settings > General > Visibility, project features, permissions

A~ - -
vamhba
viempers

niegrations

Danm v
neposiory

*Your forked repository will have a
navigation menu on the left side.
Click under Settings to add members
and set repo to private

https://git.cs.vt.edu/cs3214-staff/cs3214-cush

The GNU Project
Debugger

Starting GDB

e Invoke GDB with a program and arguments:

$ gdb --args program arg1 arg2

e Better alternative:

(gdb) run arg1 arg2

e Must be compiled with debug symbols, -g

Breakpoints

e Set a breakpoint

(gdb) b <func_name> OR

(gdb) b <line_number>

e Set a conditional breakpoint:

(gdb) b <func_name> if <condition>

e Ignore breakpoint #1 100 times

(gdb) ignore 1 100

e Show # of times breakpoint was hit

(gdb) info b

Backtrace and Frames

e Show backtrace:

(gdb) backtrace

e Show frame:
o After selecting frame, you can print all variables declared in that function call

(gdb) frame <num>

Follow-Fork-Mode
e \Which process to follow after a fork (parent / child):

(gdb) set follow-fork-mode <mode>

o ‘parent’ =ignore child process and continue debugging the parent

o ‘child’ = begin debugging the child process when fork() is called

e Retaining debugger control after fork:
o After a fork, specify whether to freeze the child or allow it to run (this may make it difficult to
find race conditions)

(gdb) set detach-on-fork <mode>

Light reading: https://visualgdb.com/gdbreference/commands/set_follow-fork-mode

https://visualgdb.com/gdbreference/commands/set_follow-fork-mode

Layout Source

e Show source code lines while debugging
e Far superior alternative to ‘list’
e Toggle with Ctrl-X+A

(gdb) layout src

M

VIRGINIA TECH.

Advice

How Can | Fail Systems?

Not utilize class resources
Mismanage your time

Not understand your tools

Fail to get along with your partner
Not break down the problem

Not understand the concepts

Advice

START EARLY

Create a roadmap before starting projects
Utilize TAs

o Come with questions prepared, try to figure out what the problem is first

o Be organized and have clean code - the cleaner it is, the faster we can help!
o Run valgrind and try debugging with GDB before consulting us

o Discord, Zoom, Class Forum

Understand the Exercises
Use valgrind! This can isolate many bugs
Become an expert at the debugger

Find what works best for communicating with your partner
o Discord, Zoom, etc.

Sources

e Referred to previous help session slides created by previous UTA's Kent
McDonough, Connor Shugg, Joe D’Anna, Chris Cerne, Justin Vita, Sam
Lightfoot, and Michael Kyer since the Spring 2021 Semester

e Spencer Keefer created the revised slides

M

VIRGINIA TECH.

Thanks for attending!

Questions?

