Automatic Memory Management

Godmar Back

Virginia Tech

November 1, 2022

\/a

VIRGINIA TECH

Godmar Back Automatic Memory Management 1/7 1/7

Automatic Memory Management

Rationale

Explicit memory management (via, e.g. malloc() and free()) is prone to errors.
All modern languages provide forms of automatic memory management, also called
“implicit memory management.”

@ Manual (explicit) memory management is difficult, many errors are possible
o Free memory too early, risk use-after-free errors
o Free too late (or forget to free (*)), risk memory leaks

@ Requires principled design that identifies ownership and lifetimes of objects
@ Complicates design of APIs
Will study
@ Garbage Collection: Principles, Implementation, and Tuning
@ Reference-counting approaches \V//al
@ Related Programming Issues: Leaks, Churn, and Bloat VIRGINIA TECH

Godmar Back Automatic Memory Management 2/7

2/17

Explicit vs. Implicit Memory Management

Explicit Memory Management
Application

calls malloc/free

Dynamic Memory
Allocator

{ manages

Heap Memory
{ requests space from OS
via sbrk()/mmap()
Virtual
Address Space
transparently
managed by OS

Physical
Memory

Godmar Back

Implicit Memory Management
Application

I calls new

'

Automatic Memol
Dynamic Memory ! ry

Manager/Garbage
Allocator

identifies Colsctoy

\ manages unreachable
memory

Heap Memory
{ requests space from OS
via sbrk()/mmap()
Virtual

Address Space

transparently
managed by OS

Physical
Memory

Automatic Memory Management 3/7

\/a

VIRGINIA TECH

3/7

Garbage Collection

Key Idea

Identify those objects that the program may be accessing in the future. Keep them,
reclaim the rest.

e Invented in 1960 by McCarthy for LISP [1]

@ Assumption: well-defined programs cannot legally access objects to which they
do not have pointers/references

@ Assumes no pointer <> integer conversion
@ Objects that can be accessed are said to be reachable
@ We do not know if program will access any reachable object in the future

@ Those that won't be accessed are said to be leaked

@ Essential abstraction: reachability graph

\/a

VIRGINIA TECH

Godmar Back Automatic Memory Management 4/7 4/7

Reachability Graph: Java Example

class B {

int x, y;

B(int x, int y) {
this.x = x;
this.y = y;

}

}

public class A {
static A S;
B f;

public static void main(String[] args) {

}

static void set(A t, B b) {

}

S = new

A local = new AQ);
B b = new B(1, 2);
set(local, b);

AQ;

b = null;

local =

t.f = b;

null;

Godmar Back

Frames Objects
Static fields Ainstance
AS 7f null
main :18 Ainstance
1N
local -//’/"-___’.4,
oD B instance
x |1
y|2

Figure 1: Reachability graph after setting b =
null. Made with

http://pythontutor.com/java.html VZ?

VIRGINIA TECH

Automatic Memory Management 5/7

5/7

http://pythontutor.com/java.html

Mark and Sweep Garbage Collection

@ ldentify roots, e.g., in Java
o Static fields
o Local variables of in-progress method

calls of all threads

o JVM Internal roots

@ Traverse the entire heap via, e.g.
DFS, "mark”ing all reachable
objects

@ Reclaim (“sweep”) all objects not
marked

Godmar Back

®

’
ofo
HE

o ¢

Figure 2: Reachability Graph VZ?

VIRGINIA TECH

Automatic Memory Management 6/7 6/7

References

[1] John McCarthy.

Recursive functions of symbolic expressions and their computation by machine,
part .

Communications of the ACM, 3(4):184-195, 1960.

\/a

VIRGINIA TECH

Godmar Back Automatic Memory Management 77 /7

