
Automatic Memory Management

Godmar Back

Virginia Tech

November 1, 2022

Godmar Back Automatic Memory Management 1/7 1 / 7



Automatic Memory Management

Rationale
Explicit memory management (via, e.g. malloc() and free()) is prone to errors.
All modern languages provide forms of automatic memory management, also called
“implicit memory management.”

Manual (explicit) memory management is difficult, many errors are possible
Free memory too early, risk use-after-free errors
Free too late (or forget to free (*)), risk memory leaks

Requires principled design that identifies ownership and lifetimes of objects

Complicates design of APIs

Will study

Garbage Collection: Principles, Implementation, and Tuning

Reference-counting approaches

Related Programming Issues: Leaks, Churn, and Bloat

Godmar Back Automatic Memory Management 2/7 2 / 7



Explicit vs. Implicit Memory Management

Application

Dynamic Memory
Allocator

Heap Memory

Virtual
Address Space

Physical
Memory

calls malloc/free

manages

requests space from OS 
via sbrk()/mmap()

transparently 
managed by OS

Application

Dynamic Memory
Allocator

Heap Memory

Virtual
Address Space

Physical
Memory

calls new

manages

requests space from OS 
via sbrk()/mmap()

transparently 
managed by OS

Automatic Memory
Manager/Garbage 

Collector
identifies 
unreachable 
memory

Explicit Memory Management Implicit Memory Management

Godmar Back Automatic Memory Management 3/7 3 / 7



Garbage Collection

Key Idea
Identify those objects that the program may be accessing in the future. Keep them,
reclaim the rest.

Invented in 1960 by McCarthy for LISP [1]

Assumption: well-defined programs cannot legally access objects to which they
do not have pointers/references

Assumes no pointer ↔ integer conversion

Objects that can be accessed are said to be reachable

We do not know if program will access any reachable object in the future
Those that won’t be accessed are said to be leaked

Essential abstraction: reachability graph

Godmar Back Automatic Memory Management 4/7 4 / 7



Reachability Graph: Java Example

class B {

int x, y;

B(int x, int y) {

this.x = x;

this.y = y;

}

}

public class A {

static A S;

B f;

public static void main(String[] args) {

S = new A();

A local = new A();

B b = new B(1, 2);

set(local, b);

b = null;

local = null;

}

static void set(A t, B b) {

t.f = b;

}

}

Figure 1: Reachability graph after setting b =

null. Made with
http://pythontutor.com/java.html

Godmar Back Automatic Memory Management 5/7 5 / 7

http://pythontutor.com/java.html


Mark and Sweep Garbage Collection

Identify roots, e.g., in Java
Static fields
Local variables of in-progress method
calls of all threads
JVM Internal roots

Traverse the entire heap via, e.g.
DFS, “mark”ing all reachable
objects

Reclaim (“sweep”) all objects not
marked

Figure 2: Reachability Graph

Godmar Back Automatic Memory Management 6/7 6 / 7



References

[1] John McCarthy.
Recursive functions of symbolic expressions and their computation by machine,
part I.
Communications of the ACM, 3(4):184–195, 1960.

Godmar Back Automatic Memory Management 7/7 7 / 7


