CS 3214 Fall 2022 Final Exam Solutions

December 15, 2022

1 Networking (28 pts)

1.1

Are you smarter than the CS3214 AI TA? (22 pts)

A (CS3214 student developed a CS3214 Al TA based on GPT-3. We asked the AT TA a few questions
about networking-related topics.

If the CS3214 AI TA answered the question correctly, check the box next to Correct. If not, check
the Not correct box and explain what it got wrong (or what’s wrong with the question). Note that the
question may contain errors and note that GPT3 sometimes tends to answer a question that wasn’t asked;
both cases count as incorrect for the purposes of this question and require a correction.

(a)

Q. Does every HTTP/1.1 request have a request body?
A. AD’s answer:
No, not all HT'TP/1.1 request have a request body. Requests such as GET and HEAD

requests do not have a request body, while requests such as POST and PUT do have a
request body.

M Correct
Q. When would an HTTP client know that it won’t need to send any more requests over an existing
connection?
A. ATl’s answer:
An HTTP client will know that it won’t need to send any more requests over an existing
connection when it receives a response with a Connection: close header from the server.

This header indicates that the server is closing the connection and that the client should
not attempt to send any more requests to it.

M Not correct: The clients knows that it won’t need to send any more requests based on context -
for instance, if it has loaded all referenced assets in a webpage, or if the user requested only a single
object as when running curl. Saying that it depends on whether the server sends a Connection: close
header is like saying you know you won’t need groceries because the store is closed.

Q. What is required to forge a JWT token without providing username and password?

A. AT’s answer:

It is not possible to forge a JWT token without providing the username and password. JWT
tokens are cryptographically signed, so any attempt to modify the token will invalidate the
signature and the token will be rejected.

I Correct

CS 3214 Final Solutions Fall 2022

(d) Q. What does the Path attribute in a cookie do?
A. AD’s answer:
The Path attribute in a cookie is used to specify the URL path that the cookie should be
sent with. This allows the server to restrict the cookie to certain paths on the website. For

example, if the Path attribute is set to ” /private”, then the cookie will only be sent with
requests to URLs that start with ” /private”.

I Correct

(e) Q. How many state machines does a bidirectional TCP connection maintain?
A. AT’s answer:

A bidirectional TCP connection maintains two state machines, one for each direction of
communication.

M Correct
(f) Q. What block cipher does TCP use by default?

A. AT’s answer:

TCP does not use a block cipher by default. It uses a stream cipher, such as RC4, to
encrypt data.

I Not correct: TCP does not provide encryption as part of its services.

(g) Q. How does TCP demultiplex incoming packets?
A. AD’s answer:
TCP demultiplexing is the process of taking incoming packets and routing them to the
appropriate application. This is done by examining the source and destination IP ad-
dresses, source and destination port numbers, and the protocol field in the IP header. The

combination of these fields is used to identify the application that the packet is intended
for.

v Correct

(h) Q. Does UDP’s retransmission timeout depend on the roundtrip time (RTT)?
A. AD’s answer:
Yes, UDP’s retransmission timeout is dependent on the roundtrip time (RTT). The RTT is
the time it takes for a packet to travel from the sender to the receiver and back again. The
retransmission timeout is the amount of time the sender will wait for an acknowledgement

before retransmitting the packet. The RTT is used to calculate the retransmission timeout
so that the sender can adjust the timeout based on the current network conditions.

M Not correct: UDP is an unreliable data transmission protocol that does not retransmit packets.
(TCP uses the RTT to determine what retransmission timeout to use.)

(i) Q. In what order does getaddrinfo() return addresses to which my server can bind?

A. AT’s answer:

The getaddrinfo function returns a list of addresses in the order in which they should be
tried. Generally, it will return IPv6 addresses first, followed by IPv4 addresses.

CS 3214 Final Solutions Fall 2022

M Not correct: Unfortunately, this is not how it works as you learned in p4. (It is true for when
a client uses getaddrinfo to find the address of a server to connect to, but unfortunately not for a
server that must find the address(es) to which to bind to accept clients.)

(j) Q. Show me how to parse cookie headers.

A. AT’s answer:

Parsing cookie headers is a relatively simple process. This first step is to split the cookie
header into individual cookie strings. This can be done by splitting the cookie header
on the semicolon character. Once the individual cookie strings have been obtained, each
cookie string can be split on the equals character to obtain the cookie name and value.
Finally, the cookie name and value can be stored in a data structure such as a hash table
or dictionary.

I Correct

(k) Q. What is the difference between read() and recv()

A. AT’s answer:

The read() system call reads data from a file descriptor, while the recv() system call reads
data from a socket. The read() system call is used to read data from a file, while the recv()
system call is used to read data from a socket. The read() system call is a blocking system
call, while the recv() system call is a non-blocking system call.

@ Not correct: read() can be used uniformly on file descriptors that refer to files or sockets. Also,
recv() is not a non-blocking system call - as you know, your p4 used recv() in blocking mode. Whether
the call is blocking or not doesn’t depend on whether read() or recv() are used, it depends on whether
the file descriptor was placed in non-blocking mode or not. (Needed to mention only one of these
facts.)

(1) This one is for extra credit:

What is your question about?
Lauer and Needham's duality argument is a philosophical
argument that states that the two fundamental aspects of
computing, namely hardware and software, are inextricably
linked. The argument states that hardware and software are two
sides of the same coin, and that neither can exist without the
other. This argument has been used to explain why software

engineering is so difficult, and why hardware and software must

be designed together.

Project 4 -

Ask me a question
What is Lauer and Needham's duality

argument?

M Not correct: GPT-3 was really eager to please with this one even though it clearly hadn’t read
the paper, causing it to hallucinate. Lauer and Needham’s duality argument is about the duality of
message-passing vs processes, or, expressed in modern lingo, events vs. threads.

1.2 Shortcomings of HTTP /1.1 (6 pts)

In project 4, you developed a simple HTTP /1.1 server. During the last decade, newer versions of HTTP
have been developed, such as HTTP/2 and HTTP/3 (QUIC). Provide 2 examples of shortcomings of
HTTP/1.1 that are addressed by these new protocols:

Any of the innovations introduced in HTTP/2 or HTTP/3 address shortcomings, including

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

CS 3214 Final Solutions Fall 2022

Head-of-Line Blocking on the TCP connection because objects must be returned in the order in which
they were requested (solved by HTTP /2 using framing)

Head-of-Line Blocking due to TCP retransmission (solved by HTTP/3)

Provides incentives for clients to create multiple independent TCP connections which consume net-
work and host resources. (Addressed in both HTTP/2 and /3).

Large header overhead (solved by header compression)
Inability for server to push objects (addressed by separate mechanisms in HTTP/2 and /3)
Needing multiple RTTs for TCP + TLS handshake before request can be sent (addressed by HT'TP/3).

Lack of mandatory encryption.

Note: 11 x 2 = 22 pts were achievable, plus 2 pts of extra credit. If the 3214 Al was correct and correct
was checked, 2 pts. If the 3214 Al was incorrect, 1 pt for checking not correct and 1 pt for a correct
explanation of why.

2

Virtual Memory (20 pts)

Consider the following C program:

#define _GNU_SOURCE 1
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <stdlidb.h>
#include <unistd.h>
#include <stdint.h>
#include <stdzo.h>

#define PGSIZE 4096

#define ROUND_DOWN_TO_PAGE(z) (((uintptr_t)z) € ~(PGSIZE-1))
#define N 4

static char global [N*xPGSIZE] __attribute__((__aligned__(PGSIZE)));

int

{

main(int ac, char *av[])

void *addr = mmap((void=)0x8888888000, N * PGSIZE, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);

int * as_int addr;

as_int [1200] 5;

printf ("echo status of pages of anonymous mmap \n");
printf("./pagemap3 Jd Jp Zp \n", getpid(), addr, addr + N*PGSIZE);

char *exe = mmap(NULL, PGSIZE, PROT_READ, MAP_SHARED,
open("/proc/self/exe", O_RDONLY), 0);

printf("echo 'eze[1..3] = ' Jclkckc\n", exel[1], exe[2], exe[3]);

printf("echo status of pages of mapped /proc/self/exe: \n");

30

32

33

34

36

37

38

39

40

41

42

43

44

45

46

10

11

CS 3214 Final Solutions Fall 2022

printf("./pagemap3 /d Zp Zp\n", getpid(), exe, exe + PGSIZE);

global[10000] = 'z';
printf("echo status of pages of global array\n'");
printf("./pagemap3 /d Jp Zp\n", getpid(), global, global + NxPGSIZE);

void *mainpage = (void *) ROUND_DOWN_TO_PAGE(main) ;
printf ("echo status of main\n");
printf ("./pagemap3 /d %p Zp\n", getpid(), mainpage, mainpage + PGSIZE);

void *small = (void*) ROUND_DOWN_TO_PAGE(malloc(4));
printf("echo status of small malloc\n");
printf("./pagemap3 Jd Jp Z4p \n", getpid(), small, small + PGSIZE);

sleep(10000) ;
return O;

When run on a 64-bit Linux machine where sizeof (int) == 4, it outputs the following shell script

echo status of pages of anonymous mmap
./pagemap3 1284207 0x8888888000 0x888888c000
echo ﬂexe[l..B] = m .

echo status of pages of mapped /proc/self/exe:
./pagemap3 1284207 0x7£05998d0000 0x7£05998d1000
echo status of pages of global array

./pagemap3 1284207 0x55a884614000 0x55a884618000
echo status of main

./pagemap3 1284207 0x55a88460f000 0x55a884610000
echo status of small malloc

./pagemap3 1284207 0x55a8853ae000 0x55a8853af000

This shell script invokes a tool pagemap3 which uses a kernel interface to obtain information about a
range of virtual pages in a running process, specifically the following three attributes:

e is_a fileis 1 if the page is backed by a file, 0 otherwise
e is_swapped_out is 1 if the page was evicted from its frame into swap space, 0 otherwise
e is present is 1 if the page is present (aka resident) in physical memory, 0 otherwise

Predict the output of this shell script! Complete the output below by filling in the correct digit
or letter for each underscore. This requires filling in 33 single digits (0 or 1).

status of pages of anonymous mmap

0x8888888000 is_a_file _ is_swapped_out _ is_present _
0x8888889000 is_a_file _ is_swapped_out _ is_present _
0x888888a000 is_a_file _ is_swapped_out _ is_present _
0x888888b000 is_a_file _ is_swapped_out _ is_present _
exe[1..3] = ___

status of pages of mapped /proc/self/exe:

0x7£05998d0000 is_a_file _ is_swapped_out _ is_present _

CS 3214 Final Solutions

status of pages of global array

0x55a884614000 is_a_file _ is_swapped_out _ is_present _
0x55a884615000 is_a_file _ is_swapped_out _ is_present _
0x55a884616000 is_a_file _ is_swapped_out _ is_present _
0x55a884617000 is_a_file _ is_swapped_out _ is_present _
status of main

0x55a88460£000 is_a_file _ is_swapped_out _ is_present _

status of small malloc

0x55a8853ae000

Assume a strictly on-demand paged system that it operating with plenty of free RAM. The pagemap3

is_a_file

is_swapped_out _

is_present _

utility outputs the virtual address of the page in question in the left column.

For extra points, predict the three letters after exe[1..3], which are magic characters inside a header

that denotes the type of the file in question; it is a 3-letter acronym.

Hint: /proc/self/exe is a symbolic link to the current process’s executable.

status of pages of anonymous mmap

0x8888888000 is_a_file O is_swapped_out O is_present O
0x8888889000 is_a_file O is_swapped_out O is_present 1
0x888888a000 is_a_file O is_swapped_out O is_present O
0x888888b000 is_a_file O is_swapped_out O is_present O
exe[1..3] = ELF

status of pages of mapped /proc/self/exe:

0x7£05998d0000 is_a_file 1 is_swapped_out O is_present 1
status of pages of global array

0x55a884614000 is_a_file O is_swapped_out O is_present O
0x55a884615000 is_a_file O is_swapped_out O is_present O
0x55a884616000 is_a_file O is_swapped_out O is_present 1
0x55a884617000 is_a_file O is_swapped_out O is_present O
status of main

0x55a88460£000 is_a_file 1 is_swapped_out O is_present 1

status of small malloc

0x55a8853ae000

is_a_file

0 is_swapped_out O is_present 1

e None of the pages is swapped out since the problem stated the assumption of “plenty of free RAM.”

e Anonymous mmap’d memory is not file backed. &as_int [1200] is 4, 800 bytes above the base address,
which causes page 0x888888900 to be touched and become present.

e The mmap’d file at /proc/self/exe is of course a file, and since we just loaded 3 bytes from this
address range, it is also present.

e The first four bytes contain the ELF header, which in fact contains the letters ‘E’, ‘L’, and ‘F”’.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

CS 3214 Final Solutions Fall 2022

e The global array is part of the BSS segment, which is not stored in any file. We touch offset 10000,

which is on the third page since the array is page-aligned.

The code of the main function is part of the executable, which is mapped as a file. This is possible
because the text portion of an executable is read-only and thus can be shared if multiple processes
run the same executable. Since there is code running inside main (), the processor must have fetched
instructions from this page, which required bringing it into physical memory, thus making it present
(otherwise, main() could not have run.)

Small malloc() calls are satisfied from a heap that is managed similar to what you implemented in
p3. The malloc() implementation thus will write block headers and footers, causing the page in
which the object is located to be present (if it wasn’t already due to other operations by the memory
allocator, such as manipulating free lists and writing list elements). Therefore, the page is present
even though no data was written to the allocated portion yet. This would not necessarily be true
had the allocated block been larger and spanned multiple pages.

We awarded points by column.

e is a file column: 8 pts max. Deduct 1 per wrong answer, capping at 0.

e is swapped_out column: 4 pts max. Deduct 1 per wrong answer, capping at 0.
e is present column: 8 pts max. Deduct 1 per wrong answer, capping at 0.

e +2 extra points for ELF

3 Dynamic Memory Management (18 pts)
Consider the following program, which uses Linux’s default implementation of malloc() and free().

#include <stdlib.h>
#include <malloc.h>
#include <stdio.h>

int
main()
{
void *a0 = malloc(96);

void *al = malloc(96);
void *a2 = malloc(96);
free(al);

void *a3 = malloc(192);
free(a2);

void *a4 = malloc(160);
void *ab5 = malloc(96);
void *a6 = malloc(96);

printf("a0 = malloc(96) -> Jp\n", a0);

printf("al = malloc(96) -> Jjp = a0 + Zd\n", al, al - a0);
printf("a2 = malloc(96) -> /p = a0 + Jd\n", a2, a2 - a0);

printf("free(al=jp) \n", al);
printf("a3 = malloc(192) -> /jp = a0 + Jd\n", a3, a3 - a0);
printf ("free(a2=/p) \n", a2);

24

25

26

27

CS 3214 Final Solutions Fall 2022

printf("a4 = malloc(160) -> Jjp = a0 + Zd\n", a4, a4 - a0);
printf("a5 = malloc(96) -> Jjp = a0 + Zd\n", ab, ab - al);
printf("a6 = malloc(96) -> Jp = a0 + Jd\n", a6, a6 - a0);

when run on our rlogin cluster with address space layout randomization (ASLR) turned off, we obtain

this output:

a0
al
a2

malloc(96) -> 0x6022a0
malloc(96) -> 0x602310 = a0 + 112
malloc(96) -> 0x602380 = a0 + 224

free(al=0x602310)

a3 =

malloc(192) -> 0x6023f0 = a0 + 336

free(a2=0x602380)

a4
ab
a6

(a)

(b)

malloc(160) -> 0x6024cO0 = a0 + 544
malloc(96) -> 0x602380 = a0 + 224
malloc(96) -> 0x602310 = a0 + 112

(3 pts) How many bytes are lost to internal fragmentation in block a0?

112—96 = 16 bytes appear to be lost to internal fragmentation (assuming that the block the allocator
allocated runs from a0 - x to al - x where x is the boundary tag header size).

(6 pts) Based on the addresses returned for a4, a5, and a6, what can you conclude about the policies
pursued by this allocator? Is the observed behavior the same as what your p3 allocator would have
returned? Explain why or why not.

Blocks al and a2 (each holding 96 bytes of payload) were adjacent, but even after both are freed,
the resulting area in memory is not reused to satisfy an allocation request of size 160. Most p3
implementations would have immediately coalesced these 2 freed blocks and used them to satisfy the
160 byte request - for instance, because this block would have been found in the same or next larger
size class. However, GNU’s malloc() keeps dedicated free lists for small blocks it does not coalesce,
so-called “fast bins,” which we observe here in action.

(3 pts) Does this allocator use a LIFO or a FIFO insertion policy for its free lists?

M LIFO /O FIFO
because ab reuses the block a2 previously used, which was most recently freed.

(6 pts) Now consider what happens when we increase the requested size of each block by a factor of
100. We now obtain this output:

a0 = malloc(9600) —> 0x6022a0
al = malloc(9600) -> 0x604830 = a0 + 9616
a2 = malloc(9600) -> 0x606dcO = a0 + 19232

free(a1=0x604830)
a3 = malloc(19200) -> 0x609350 = a0 + 28848
free(a2=0x606dc0)

a4 = malloc(16000) -> 0x604830 = a0 + 9616
ab = malloc(9600) -> 0x60de60 = a0 + 48064
a6 = malloc(9600) -> 0x6103f0 = a0 + 57680

Describe what changed compared to the smaller size case.

Now blocks a1l and a2 were immediately coalesced and reused for the allocation of 16 000 bytes for
ad. This then caused the allocations of blocks a5 and a6 to be allocated after them, likely expanding

10

11

12

13

14

15

CS 3214 Final Solutions

Fall 2022

the heap. This shows that GNU malloc() does not delay coalescing for large blocks. This behavior

is probably identical to most p3 implementations.

4 Automatic Memory Management (18 pts)

4.1 Understanding Object Reachability (9 pts)

Consider the following Java program:

public class YourClassNameHere {
static class Nested {
Nested n2;
Nested(boolean nest) {
if (nest)
n2 = new Nested(false);

public static void main(String[] args) {

Nested nl = new Nested(true);
Nested n3 = nl1.n2;
nl = null;

The following drawings show the structure of the live heap at three different points of execution of this

program. Identify those points

Frames Objects

main: Nested instance Nested instance

0 e o 2 «— 7 n2 nul

(a) (3 pts)
This situation arises after line 11 has executed.
Frames Objects

main: Nested instance Nested instance

n2 e > n2 | null

<init>:

this

nest ftrue
(b) (3 pts)

This situation arises after line 6 has executed.

10

11

12

13

14

15

16

17

CS 3214 Final Solutions Fall 2022

Frames Objects

main: Nested instance
nl nul/ n2 null
n3

(c) (3 pts)

This situation arises after line 13 has executed.

4.2 Memory Leak in Python (9 pts)

On the CS3214 forum, a student shared a link to an article published on the website “Geeks for Geeks”
that discusses a “memory leak” in Python. The author of this article analyzed the following program:

import requests
import gc

def call():
response = requests.get('https://google.com’)
print("Status code" ,response.status_code)
return

def main():
print("No.of tracked objects before calling get method")
print(len(gc.get_objects()))
call()
print("No.of tracked objects after calling get method")
print(len(gc.get_objects()))

if __name == "__main__":

This program uses the gc.get_objects() method, which returns the number of currently allocated
but not yet freed objects. When the author ran it, this program output:

No.of tracked objects before calling get method
16071

Status code 200

No.of tracked objects after calling get method
16158

They concluded that because the “returned object count (after calling get) is greater, (...) there is a
memory leak.”

However, when they added a call to invoke Python’s garbage collector after line 12, they observed
that the number of reported objects went down to 15954. They concluded that they were able to “Fix
(the) Memory leak” by manually calling the gc.collect () method (which triggers a garbage collection in
Python).

(a) (3 pts) What could account for the larger number of allocated objects observed on line 14 compared
to line 117

10

CS 3214 Final Solutions

Fall 2022

Languages such as Python that use automatic memory management allocate temporary,
short-lived objects as they run. Any temporary objects allocated during the call to
requests.get () may not have been garbage collected on line 14 and thus show up in
the statistics of currently allocated but not yet freed objects. In addition, a library like
requests may allocate singleton objects on a first call, and it may also allocate and retain
certain objects it intends to reuse in the future, such as pooled connections.

(b) (3 pts) Is the author of this article correct in concluding the existence of a leak inside the Python
requests library (invoked on line 5), based on their observations? (Justify your answer.)

The author observes that the number of currently allocated objects goes down after explic-
itly invoking the collector. This is the expected behavior of garbage collection; it is not a
leak. A leak would be if the number of allocated objects did not go down after collection.

(¢) (3 pts) Can memory leaks in a language such as Python be fixed by invoking the garbage collector?

(Briefly say why or why not.)

No. Leaks in garbage collected languages like Python occur when still reachable objects
aren’t accessed in the future. If the garbage collector is able to free objects, they are not

reachable, and thus not part of a leak.

5 Virtualization (16 pts)

To achieve concurrent execution, application developers have access to a wide spectrum of approaches.
This question asks you to show your computer systems knowledge regarding a range of these approaches.

Answer the questions from the perspective of the programmer creating applications and address the
default case (not setups that may be achievable using special-purpose APIs). Assume multiple instances
of each entity, colocated as closely as possible (e.g., consider multiple threads within one process, not
multiple threads running on different physical machines, consider multiple processes in a container, multiple

containers in a virtual machine, etc.)

Virtual Physical

Threads | Processes | Containers | machines | machines
Provide independent control flows]]] v]
Share all file descriptors] O O O O
Share a filesystem namespace, e.g. /bin v v} O O O
Share a virtual address space v O O O O
Share a namespace of user ids v v} O O O
Share a kernel v v v O O
Share a physical machine v v v v O
Provide the strongest level of isolation O O U ([l]

e All forms provide independent control flows.

e Only threads within a process share all file descriptors and a virtual address space. Any of the others

do not.

e Threads and processes (within a container, virtual machine, or physical machine) share a filesystem
namespace and user id namespace. Different containers can have different filesystem and user id

namespaces.

e Threads within a process and processes within a container and containers within a virtual or physical
machines share a kernel. Virtual or physical machines do not.

11

CS 3214 Final Solutions Fall 2022

e Threads within a process, processes within a container, containers within a virtual machine, and
virtual machines running on a physical machine share the physical machine on which they’re running.

e Physical machines provides the strongest level of isolation.

All 40 entries correct gave 16 points. We subtracted 1 pt per wrong answer, capping at 0.

12

	Networking (28 pts)
	Are you smarter than the CS3214 AI TA? (22 pts)
	Shortcomings of HTTP/1.1 (6 pts)

	Virtual Memory (20 pts)
	Dynamic Memory Management (18 pts)
	Automatic Memory Management (18 pts)
	Understanding Object Reachability (9 pts)
	Memory Leak in Python (9 pts)

	Virtualization (16 pts)

