
CS 3214 Spring 2020 Test 1C Solution

1/8

CS 3214 Test 1C Solution

59 students took this test. Statistics are shown below. For questions contact me
(gback@vt.edu). The note sheet should be attached to your test. You may bring
it to the final exam.

 Q1 Q2 Q3 Total

MAX 12 12 20 39

MIN 0 1 1 7

AVG 6.93 3.81 11.88 22.63

STD 4.26 3.38 4.09 8.78

MEDIAN 7 2 12 22

Solutions are displayed in this color.

0

2

4

6

8

10

12

<6 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45

CS 3214 Spring 2020 Test 1C
n=59, median=22, max=50

mailto:gback@vt.edu

CS 3214 Spring 2020 Test 1C Solution

2/8

1. Parent and Child Processes (12 pts)
Consider the following C program executing on Linux:

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

pid_t save_cpid; // 1

int main() { // 2

 pid_t cpid = fork(); // 3

 if (cpid < 0) { // 4

 perror("fork"), exit(1); // 5

 } // 6

 save_cpid = cpid; // 7

 if (cpid == 0) { // 8

 printf("Child is %d and parent is %d\n", getpid(), getppid()); // 9

 save_cpid = save_cpid + 25; // 10

 sleep(10); // sleep 10s // 11

 } else { // 12

 printf("Parent is %d and child is %d\n", getpid(), cpid); // 13

 save_cpid = save_cpid - 25; // 14

 } // 15

 printf("%d sees save_cpid = %d\n", getpid(), save_cpid); // 16

 if (cpid == 0) { // 17

 exit(42); // 18

 } // 19

 int child_status; // 20

 pid_t wpid = wait(&child_status); // 21

 if (wpid == -1) // 22

 printf("Could not wait for child yet.\n"); // 23

 else if (WIFEXITED(child_status)) // 24

 printf("Child %d terminated with exit status %d\n", // 25

 wpid, WEXITSTATUS(child_status)); // 26

 else // 27

 printf("Child %d terminated abnormally\n", wpid); // 28

 return 0; // 29

}

When the program was executed, lines 9 and 13 produced the following
output (though not necessarily in this order)

CS 3214 Spring 2020 Test 1C Solution

3/8

Parent is 8386 and child is 8387
Child is 8387 and parent is 8386

a) (6 pts) What output would have been produced by line 16?

8386 sees save_cpid = 8362
8387 sees save_cpid = 25

(in any order)

b) (6 pts) Which, if any, of lines 23, 25, or 28 will be executed, and what

would be output by the line(s)? If the answer cannot be uniquely
determined in a concurrent environment, say why.

Line 25 will execute and output:

Child 8387 terminated with exit status 42

The answer is unique in a concurrent environment – the fact that the child sleeps
for 10s doesn’t matter – wait() will block the parent process until the child exits on
line 18. Conversely, it would work even if the child had already exited by the time
the parent calls wait.

2. IPC via Pipes (18 pts)
a) (9 pts) Consider the following program, executing under normal conditions

on our rlogin cluster:

#include <stdio.h>

#include <assert.h>

#include <unistd.h>

int

main()

{

 int fd[2];

 assert(pipe(fd) == 0);

 char buf[5];

 printf("FORK\n");

 if (fork()) {

 int rc = read(fd[0], buf, 4);

 switch (rc) {

 case 4: buf[4] = 0;

 printf("%s\n", buf); break;

 case 0: printf("READ-EOF\n"); break;

 case -1: printf("READ-ERROR\n"); break;

 }

 } else {

 assert(dup2(fd[1], STDOUT_FILENO) == STDOUT_FILENO);

CS 3214 Spring 2020 Test 1C Solution

4/8

 int rc = execv("/bin/echo",

 (char *[]){ "echo", "ECHO", NULL });

 switch (rc) {

 case 0: printf("EXEC-SUCCESS\n"); break;

 case -1: printf("EXEC-ERROR\n"); break;

 }

 }

 printf("DONE\n");

}

Which of the following are possible outputs of this program? Check all that
apply!

❑ FORK

ECHO
EXEC-SUCCESS
DONE
DONE

❑ FORK
FORK
ECHO
DONE
DONE

❑ FORK
READ-EOF
DONE

 FORK
ECHO
DONE

❑ FORK
FORK
ECHO
EXEC-SUCCESS
DONE
DONE

❑ FORK
READ-ERROR
EXEC-ERROR
DONE
DONE

The child process’s stdout is redirected to a pipe from which the parent process
reads. The child execs ‘echo ECHO’ which writes ECHO to stdout and thus to the
pipe, which the parent reads from. Since execv() does not return, DONE is output
only once.
Pipes keep their data even if the processes writing to them have already
terminated. Thus, the above is the only possible output.

b) (9 pts) The ‘time’ bash built-in can be used as follows:

$ time <some command possibly with pipes goes here>

After the user’s job has finished, the user will see output that has the
following format:

real 0m<REAL>s
user 0m<USER>s
sys 0m<SYSTEM>s

where (a) <REAL>, (b) <USER>, and (c) <SYSTEM> are replaced with (a) the

number of seconds that elapsed as could be observed on a wallclock, (b)
the number of CPU seconds all processes involved in the job spent

CS 3214 Spring 2020 Test 1C Solution

5/8

executing in user mode cumulatively, and (c) the number of CPU seconds
these processes spent executing in kernel mode, respectively.

Consider the following terminal session in which the user issues 3
commands that involve I/O redirection:

1) $ time seq 1 15000000 > /tmp/numbers-to-15mil.txt

real 0m0.302s
user 0m0.200s
sys 0m0.102s

2) $ time factor < /tmp/numbers-to-15mil.txt > /tmp/factors.txt

real 0m6.004s
user 0m5.731s
sys 0m0.274s

3) $ time wc /tmp/factors.txt

 15000000 72176045 328794419 /tmp/factors.txt

real 0m1.917s
user 0m1.839s
sys 0m0.078s

The seq command prints a series of numbers, one per line. The factor

program reads a number from its standard input stream, computes its
prime factorization and outputs the result, repeating this process until it
exhausts its input. The wc utility reads its standard input stream line-by-

line, counting the number of characters and words along the way. All three
programs are traditional, single-threaded programs.

For instance:

$ seq 16 19 | factor
16: 2 2 2 2
17: 17
18: 2 3 3
19: 19

i. (3 pts) Referring to the simplified process state diagram discussed

in lecture, check, for each command, the state in which its process
spent most of its time:

 RUNNING READY BLOCKED
1) seq 1 15000000 > …  ❑ ❑

CS 3214 Spring 2020 Test 1C Solution

6/8

2) factor < … > …  ❑ ❑

3) wc < …  ❑ ❑

Process 1) used 0.200s + 0.102s CPU seconds in 0.302 seconds, which is
100%. A process can use CPU time only if it’s in the RUNNING state. Similar
numbers apply to process 2) and 3) – all three processes were CPU bound, and
there was apparently no contention for CPUs on the machine I ran them on (that
is, the machine had enough free cores at the time.)

ii. (6 pts) Now the user types instead:

$ time seq 1 15000000 | factor | wc
15000000 72176045 328794419

real 0m????s
user 0m????s
sys 0m????s

Which of the following would be the most likely output when run on the
multiprocessor machines of our rlogin cluster (currently 2 processor
machines with 10 cores per processor)?

A
❑

B
❑

C


D
❑

real 0m8.223s
user 0m7.700s
sys 0m0.454s

real 0m6.251s
user 0m5.805s
sys 0m0.446s

real 0m6.251s
user 0m8.282s
sys 0m0.446s

real 0m3.129s
user 0m9.220s
sys 0m0.879s

Running the three commands in a pipe allowed them to be started
simultaneously on different cores. As the first one produced output, the second
process could process those numbers as per its description. The output of
`factor` was in turn fed to `wc` as soon as it is produced. This way, the
executions of these three programs could overlap. The overall consumed user +
system time was roughly equivalent (0.200+5.731+1.839 = 7.7 vs 8.282s, and
0.102+0.274+0.078 = 0.454 vs 0.446s). However, the execution of ‘factor’
(roughly 6s when run separately) could almost fully overlap with the execution of
‘seq’ and ‘wc’.

Answer A could be ruled out because it would imply that ‘factor’ and ‘seq’ run in
sequence rather than concurrently.
Answer B could be ruled out because it would mean that the overall consumed
CPU time would somehow be much smaller even though the processes were
doing the same work.
Answer D could be ruled out because merely running serial code in a pipeline
doesn’t parallelize it – ‘factor’ will still need roughly 6s to perform its task.

CS 3214 Spring 2020 Test 1C Solution

7/8

3. Short Answers (20 pts)
Evaluate each of the following statements. If the statement is true, say so. If the
statements is false, explain why.

a) (4 pts) “A successful call to fork() creates a child process and triggers a

context switch to that child process.”

❑ is true

 is false, because there is no guarantee of a context switch to the child
process. When (and even on which CPU) the child process will be run is
entirely up to the decisions of the scheduler. Unix OS’s have used
different scheduling policies over time. If the child process runs on a
different core, the parent wouldn’t have to context switch at all.

b) (4 pts) “When user-implemented signal handlers are called, they execute

in kernel mode.”

❑ is true

 is false, because signal handlers are still provided by a user. If they
executed in kernel mode, they would have full control of the machine and
could compromise security and availability, inadvertently or maliciously.

c) (4 pts) “When a process is executing on a CPU under a multitasking

operating system, an interrupt handler may cause a context switch to
another process.”

 is true.
This is a common occurrence – an interrupt handler may signal the
completion of a time slice, or perhaps the arrival of a new network packet,
or completion of disk I/O – all of these are events that may cause the OS’s
scheduler to context switch to another process that was either waiting for
the CPU or for one of the I/Os to complete.

❑ is false, because

d) (4 pts) “When a user process attempts to access invalid memory

addresses, it is stopped by default until an administrator can examine its
state and terminate the process.”

❑ is true.

 is false, because the OS will send a SIGSEGV signal whose associated
default behavior is to terminate the process.

CS 3214 Spring 2020 Test 1C Solution

8/8

e) (4 pts) “Processes executing systems calls always transition to the
BLOCKED state where they remain until the system call completes.”

❑ is true.

 is false, because the BLOCKED state is entered only if the system call
causes the process to wait for something that will complete in the future.
For instance, if a process makes a system call to receive a packet from
the network, it will be BLOCKED only if no packet has already been
received and buffered. Similarly, a process trying to read from disk may
block only if the data is not already cached in memory. Some system calls
(e.g., getpid()) will not block at all. Some system calls (e.g.
waitpid(,,WNOHANG)) have an option to explicitly instruct the OS to avoid
blocking even if the system call cannot complete right away. In all of these
cases, the process remains in the RUNNING state unless preempted.

