
CS 3214  Sample Midterm (Spring 2018) 
 

1/13 

CS 3214 Sample Midterm 
 
Solutions are shown in this style. This exam was given Spring 2018. 
 

1. Compiling and Linking (17 pts) 
a) (4 pts) Separate Compilation. Consider the following module.c file: 

 
// module.c 
int iiii; 
static double dddd; 
extern float eeee; 
short ssss = 42; 
 
static float  
ffff(float gggg) { 
    return gggg + eeee; 
} 

 
When running gcc –c –m32 module.c; nm module.o which of the 

following is output? (Hint: -m32 compiles in 32-bit mode in which integers 
are 32-bit long.)  Check one! 
 

A 
❑ 

B 
❑ 

C 
 

D 
❑ 

00000000 b dddd 
00000000 t ffff 
00000004 C iiii 
00000000 D ssss 

00000000 b dddd 
         U eeee 
00000000 t ffff 
00000004 D iiii 
00000000 s ssss 
00000004 d gggg 

00000000 b dddd 
         U eeee 
00000000 t ffff 
00000004 C iiii 
00000000 D ssss 

00000000 d dddd 
         U eeee 
00000000 T ffff 
00000004 C iiii 
00000000 D ssss 

 
Explanation: 
A is missing the external reference to eeee which shows up as U 
B includes gggg, which is local variable that’s resolved by the compiler 
D has ffff as a global symbol, but it’s static.  Ditto for ssss. 

 
b) (4 pts) As you may remember from exercise 2, the size command outputs 

the size (in bytes) taken up by the text, data, and bss sections of an 
executable or object module. 
If we then ran size module.o, what output would we see? 

Hint: since weakly defined symbols have not been resolved (we have not 
invoked the linker), size will not include any memory needed for them yet. 

 

A ❑ 
   text    data     bss     dec     hex filename 
     70      12       4      86      56 module.o 

B  
   text    data     bss     dec     hex filename 
     70       2       8      80      50 module.o 



CS 3214  Sample Midterm (Spring 2018) 
 

2/13 

C ❑ 
   text    data     bss     dec     hex filename 
     70       2      12      84      54 module.o 

D ❑ 
   text    data     bss     dec     hex filename 
      0       2       8      10       A module.o 

 
Explanation: 
The short ssss takes up 2 bytes in the data section, and the double dddd takes 
up 8 bytes in the BSS section. As per hint, the weak global iiii is not counted. 
There are no other definitions. The module contains a function, so the size of the 
program text cannot be 0. 
 

c) (9 pts) Let’s add a second file, main.c, as follows: 
 
// main.c 
float ffff(float gggg); 
 
int main() 
{ 
    ffff(0.5); 
} 

  
If you compiled and linked the two files like so, you’d see: 
 
$ gcc main.c module.c 
/tmp/cc2sWLpp.o: In function `main': 
main.c:(.text+0xd): undefined reference to `ffff' 
/tmp/ccxL3Lms.o: In function `ffff': 
module.c:(.text+0xd): undefined reference to `eeee' 
collect2: error: ld returned 1 exit status 

 
Which strategies will work to fix these errors? 
Check all that apply (i.e., strategies that would, when applied in isolation, 
correct the error)! 
 
To correct/avoid the undefined reference to `ffff’ error, we can 
 

A ❑ Move the declaration float ffff(float gggg) from the 

main.c file to a .h header file (and include it in both 
module.c and main.c) 

B ❑ Add the keyword extern to the declaration in main.c, e.g. 
extern float ffff(gggg) 

C ❑ Add the keyword static to the declaration in main.c 

D  Remove the keyword static from the definition in 

module.c 

 
To correct/avoid the undefined reference to `eeee' error, we can 
 



CS 3214  Sample Midterm (Spring 2018) 
 

3/13 

A  Replace the keyword extern with the keyword static in 

the declaration of eeee in module.c 

B  Add float eeee; to main.c 

C  Remove the keyword extern from the declaration of eeee 
in module.c 

D ❑ Add extern float eeee; to main.c 

E  Add float eeee; to a header file that is included at the 

top of both main.c and module.c 

 
You can try all of these out yourselves and look at the resulting symbol tables. 
This was graded like 9 true/false questions (1 pts for correct answer each.) 

 

2. Understanding Unix Processes (30 pts) 
a) (5 pts) How many processes are created when the user types in ./fork3 on 

the command line, where fork3 is the executable corresponding to the 
following C program: 
 
// fork3.c 
int 
main() 
{ 
    fork(); 
    if (fork()) 
        fork(); 
 
    sleep(1000000); 
} 

 
Check one! 
 

A 
❑ 

B 
❑ 

C 
❑ 

D 
 

E 
❑ 

3 4 5 6 7 

 
Explanation: ps f would show: 

 
  PID TTY      STAT   TIME COMMAND 
18573 pts/1    Ss     0:00 -bash 
22455 pts/1    S      0:00  \_ ./fork3 
22456 pts/1    S      0:00  |   \_ ./fork3 
22458 pts/1    S      0:00  |   |   \_ ./fork3 
22460 pts/1    S      0:00  |   |   \_ ./fork3 
22457 pts/1    S      0:00  |   \_ ./fork3 
22459 pts/1    S      0:00  |   \_ ./fork3 
22461 pts/1    R+     0:00  \_ ps f 

 
b) (5 pts) Consider the following program wallclockpuzzle, which is compiled 

from wallclockpuzzle.c, shown below: 



CS 3214  Sample Midterm (Spring 2018) 
 

4/13 

 
// wallclockpuzzle.c 
int 
main() 
{ 
    if (fork()) { 
        sleep(2); 
    } else { 
        sleep(4); 
    } 
} 

 
Consider what happens when running the ‘time’ bash built-in as follows 
 
$ time ./wallclockpuzzle  
 
The user will see output that has the following format: 
 
real    0m<REAL>s 
user    0m<USER>s 
sys     0m<SYSTEM>s 
 
where (a) <REAL>, (b) <USER>, and (c) <SYSTEM> are replaced with (a) the 

number of seconds that elapsed as could be observed on a wall clock, (b) 
the number of CPU seconds the process and all its descendants spent 
executing in user mode, and (c) the number of CPU seconds the process 
and its descendants spent executing in kernel mode, respectively. 
 
What’s a possible output of running time as shown above? 

A 
❑ 

B 
❑ 

C 
❑ 

D 
 

real    0m2.004s 
user    0m0.001s 
sys     0m2.002s 

real    0m4.004s 
user    0m6.001s 
sys     0m0.002s 

real    0m2.004s 
user    0m2.001s 
sys     0m0.002s 

real    0m2.004s 
user    0m0.001s 
sys     0m0.002s 

 
Explanation: the shell waits only for the process it started, not for grandchildren, 
and this process exits after 2 wall clock seconds. Neither the parent nor the child 
use up significant CPU time since they spend all of their time being BLOCKED 
while sleeping in the sleep() system call. 

 
c) (20 pts) Implement the functions ll_popen() and ll_pclose() according 

to the specification given below. (Error handling is not required.)  
  



CS 3214  Sample Midterm (Spring 2018) 
 

5/13 

#include <stdio.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdbool.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
 
/* 
NAME 
       ll_popen, ll_pclose - pipe stream to or from a process 
 
SYNOPSIS 
 
       struct ll_pipe *ll_popen(const char *command, enum ll_pipe_direction 
type) 
 
       int ll_pclose(struct ll_pipe *pipe) 
 
DESCRIPTION 
       The  ll_popen() function opens a process by creating a pipe, 
       forking, and invoking the shell.  Since a pipe is by definition 
       unidirectional, the type argument may specify only reading 
       or writing, not both; the resulting stream is correspondingly 
       read-only or write-only. 
 
       The command argument is a pointer to a null-terminated string 
       containing a shell command line.  This command is passed to 
       /bin/sh using the -c flag;  interpretation,  if  any, is 
       performed by the shell. 
 
       The type argument is either READ_FROM_PROCESS or WRITE_TO_PROCESS 
       depending on whether the resulting file descriptor is to be used 
       to read the process's standard out or to write to the process's 
       standard input stream. 
 
       input is the same as that of the process that called popen(). 
 
       The return value from ll_popen() is a dynamically allocated 
       struct that contains a field 'fd' which the caller may use to 
       access the connected file descriptor. 
 
       The ll_pclose() function shall wait for the associated process to 
       terminate and return the exit status of the command as returned 
       by waitpid(2). 
*/ 
struct ll_pipe { 
    int child_pid;  // pid of child process 
    int fd;         // file descriptor used to read/write 
}; 
 
enum ll_pipe_direction { 
    READ_FROM_PROCESS,  
    WRITE_TO_PROCESS 
}; 



CS 3214  Sample Midterm (Spring 2018) 
 

6/13 

 
struct ll_pipe *ll_popen(const char *command, enum ll_pipe_direction type) 
{   
    int fd[2]; 
 
    pipe(fd); 
    pid_t child = fork(); 
 
    if (child == 0) { 
        const char *av[] = { "/bin/sh", "-c", command, NULL }; 
        if (type == READ_FROM_PROCESS) { 
            dup2(fd[1], 1); 
        } else { 
            dup2(fd[0], 0); 
        } 
        close(fd[0]); 
        close(fd[1]); 
        execv(av[0], (char * const *) av); 
        abort(); 
    } else { 
        struct ll_pipe * ret = malloc(sizeof(*ret)); 
        ret->child_pid = child; 
        if (type == READ_FROM_PROCESS) { 
            close(fd[1]); 
            ret->fd = fd[0]; 
        } else { 
            close(fd[0]); 
            ret->fd = fd[1]; 
        } 
        return ret; 
    } 
} 
 
int ll_pclose(struct ll_pipe *pipe) 
{       
    int status; 
    close(pipe->fd); 
    waitpid(pipe->child_pid, &status, 0); 
    free(pipe); 
      
    return WEXITSTATUS(status); 
} 
 
/* Test program follows. */ 
int main(int ac, char *av[]) 
{ 
    bool reading = !strcmp(av[1], "-r"); 
    struct ll_pipe * pipe = ll_popen(av[2],  
            reading ? READ_FROM_PROCESS : WRITE_TO_PROCESS); 
    char c; 
    if (reading) { 
        while (read(pipe->fd, &c, 1) > 0) 
            write(1, &c, 1); 
    } else { 
        while (read(0, &c, 1) > 0) 



CS 3214  Sample Midterm (Spring 2018) 
 

7/13 

            write(pipe->fd, &c, 1); 
    } 
 
    ll_pclose(pipe); 
} 
 

If your functions work correctly, this program would output: 
 
$ ./popen -r "head -3 /etc/motd" 
 
Welcome to the Computer Science remote login service. 
 
$ 

 
Or 
 
$ head -3 /etc/motd | ./popen -w wc 
      3       8      56 

3. MultiThreading (35 pts) 
a) (5 pts) Consider the following program: 

 
#include <pthread.h> 
#include <stdio.h> 
 
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 
 
static void* 
thread(void *arg) 
{ 
    pthread_mutex_lock(&lock); 
    printf("%s\n", (char *) arg); 
    pthread_mutex_unlock(&lock); 
} 
 
int 
main() 
{ 
  pthread_t t[5]; 
  const char * msgs[] = { "A", "B", "C", "D", "E" }; 
 
  for (int ti = 0; ti < 2; ti++) 
    pthread_create(t+ti, NULL, thread, (void *)msgs[ti]); 
 
  for (int ji = 0; ji < 2; ji++) 
    pthread_join(t[ji], NULL); 
 
  for (int ti = 2; ti < 5; ti++) 
    pthread_create(t+ti, NULL, thread, (void *)msgs[ti]); 
 
  for (int ji = 2; ji < 5; ji++) 
    pthread_join(t[ji], NULL); 
} 



CS 3214  Sample Midterm (Spring 2018) 
 

8/13 

 
How many different possible outputs does this program have? 
 

A 
❑ 

B 
❑ 

C 
❑ 

D 
❑ 

E 
 

F 
❑ 

1 2 5 6 12 120 

 
Explanation: A and B can be printed in any order, as can C, D, and E, but C 
cannot be printed until after A & B have been printed, hence 2! * 3! = 12 possible 
outputs. 

 
b)  (8 pts) Carefully examine the following program: 

 
sem_t s[5]; 
 
static void* 
thread_A(void *_) 
{ 
    printf("A"); 
    sem_post(&s[0]); 
    sem_post(&s[1]); 
} 
 
static void* 
thread_B(void *_) 
{ 
    printf("B"); 
    sem_wait(&s[0]); 
    sem_post(&s[2]); 
} 
 
// Note the order of the printf,  
// sem_wait, sem_post etc. calls  
// in each thread_* function! 
 

static void* 
thread_C(void *_) 
{ 
    sem_wait(&s[2]); 
    printf("C"); 
    sem_post(&s[3]); 
} 
 
static void* 
thread_D(void *_) 
{ 
    sem_wait(&s[3]); 
    sem_wait(&s[4]); 
    printf("D"); 
} 
 
static void* 
thread_E(void *_) 
{ 
    sem_wait(&s[1]); 
    printf("E"); 
    sem_post(&s[4]); 
} 
 
 

int 
main() 
{ 
    for (int i = 0; i < 5; i++) 
        sem_init(&s[i], 0, 0); 
 
    void * (*f[])(void *) = { thread_A, thread_B,  
            thread_C, thread_D, thread_E }; 
 
    pthread_t t[5]; 
    for (int i = 0; i < 5; i++) 
        pthread_create(t+i, NULL, f[i], NULL); 
 
    for (int i = 0; i < 5; i++) 



CS 3214  Sample Midterm (Spring 2018) 
 

9/13 

        pthread_join(t[i], NULL); 
} 

 
Which of the following are not a possible output of this program? 
Check all that apply! 

 

A 
❑ 

B 
❑ 

C 
❑ 

D 
 

E 
❑ 

ABCED BACED AEBCD AECBD BAECD 
 

Explanation: The semaphores impose constraints A → C → D and B → C → D 

and A → E → D. (Note that thread_B call printfs before waiting.) Only answer D 
violates one of these. 
 
This was graded as follows: If D was not checked, 0 pts. If D was checked, -2 pts deduction for any 
other option also checked, capped at 0. 
 

c) (22 pts) Consider the program shown below, which contains a bug. 
 
#include <pthread.h> 
#include <stdio.h> 
#include <sys/time.h> 
/* 
 * The following program measures the time required to start one thread, 
 * and reports it within the thread itself. 
 */ 
 
struct time_range { 
    struct timeval before, after; 

int time_available; 
pthread_mutex_t lock; 
pthread_cond_t cond; 

} tr; 
 
static void* thread(void *_) { 
    struct timeval diff; 

pthread_mutex_lock(&tr.lock); 
while (!tr.time_available) 
     pthread_cond_wait(&tr.cond, &tr.lock); 
pthread_mutex_unlock(&tr.lock); 

    timersub(&tr.after, &tr.before, &diff); 
    printf("Creating this thread took %ld microseconds\n", diff.tv_usec); 
} 
 
int main() { 
    pthread_t t; 

 
pthread_mutex_init(&tr.lock, NULL); 
pthread_cond_init(&tr.cond, NULL);    
  

    gettimeofday(&tr.before, NULL); 



CS 3214  Sample Midterm (Spring 2018) 
 

10/13 

    pthread_create(&t, NULL, thread, NULL); 
    gettimeofday(&tr.after, NULL);  

 
pthread_mutex_lock(&tr.lock); 
tr.time_available = 1; 
pthread_cond_signal(&tr.cond); 
pthread_mutex_unlock(&tr.lock); 
 

    pthread_join(t, NULL); 

} 
 

i. (2 pts) Describe the problem in one sentence! 
 

The thread could access tr.after before it has been set. 
 

ii. (4 pts) This kind of bug is commonly classified as (check one!) 
 

A 
❑ 

B 
❑ 

C 
❑ 

D 
 

Starvation  Deadlock Atomicity 
Violation 

Order Violation 

 
iii. (12 pts) Fix the bug by introducing a condition variable in a 

manner that avoids busy-waiting. Add your bug fixes in the 
empty spaces in the code on the previous page. You may not 
change any of the existing code. Add additional variables as 
needed and show their initialization (if any)! You must use a 
condition variable for credit. 
 

See above. 
 
For credit, it was required that you use a condition variable, not a semaphore. 

 
iv. (4 pts) Would it have been possible to correct the bug using just a 

mutex (and without condition variables or semaphores?) If so, 
briefly sketch how!  If not, explain why not! (Maximum 2 sentences.) 
 

Yes, in fact, it would have been easier to do so – the main thread could acquire a 
mutex before calling pthread_create() and release it after calling 
gettimeofday(&tr.after). The thread would acquire the lock before accessing 
tr.after, thus ensuring that it won’t access tr.after until after the main thread set it. 
 
Code below. 
 
struct time_range { 
    struct timeval before, after; 
    pthread_mutex_t lock; 
} tr; 



CS 3214  Sample Midterm (Spring 2018) 
 

11/13 

 
static void* thread(void *_) 
{ 
    struct timeval diff; 
    pthread_mutex_lock(&tr.lock);  // won't get lock until tr.after is set. 
    pthread_mutex_unlock(&tr.lock); 
 
    timersub(&tr.after, &tr.before, &diff); 
    printf("Creating this thread took %ld microseconds\n", diff.tv_usec); 
} 
 
int 
main() 
{ 
    pthread_t t; 
 
    pthread_mutex_init(&tr.lock, NULL); 
 
    pthread_mutex_lock(&tr.lock);   // acquire lock before spawning thread. 
    gettimeofday(&tr.before, NULL); 
    pthread_create(&t, NULL, thread, NULL); 
    gettimeofday(&tr.after, NULL); 
    pthread_mutex_unlock(&tr.lock); // release lock after setting tr.after 
 
    pthread_join(t, NULL); 
} 
 

4. Potpourri (18 pts) 
a) (4 pts) The following paragraph is from Cantrill & Bonwick’s 2008 paper on 

Real-world Concurrency. One word was elided from the paragraph. Find 
out which word! 

 

Learn to debug postmortem. Among some Cassandras of concurrency, a 

deadlock seems to be a particular bogeyman of sorts, having become the 

embodiment of all that is difficult in lock-based multithreaded programming. 

This fear is somewhat peculiar, because deadlocks are actually among the 

simplest pathologies in software: because (by definition) the threads involved in 

a deadlock cease to make forward progress, they do the implementer the 

service of effectively freezing the system with all state intact. To debug a 

deadlock, one need have only a list of threads, their corresponding stack 

backtraces, and some knowledge of the system. This information is contained in 

a snapshot of state so essential to software development that its very name 

reflects its origins at the dawn of computing: it is a core dump. 

 
The elided word is   deadlock 
 



CS 3214  Sample Midterm (Spring 2018) 
 

12/13 

The prize for the funniest non-answer goes to “thread pool,” which most certainly do not constitute 
one of the “simplest pathologies” in software. 
 

b) (4 pts) (Fill in the blank!) A system in which all threads or processes are in 
the BLOCKED state, but which otherwise is operating normally, is said to 
be ____________ idle _____________. 

 
Note that the other plausible answer “deadlocked” was clearly ruled out by the stipulation 
“otherwise is operating normally” which cannot be said about a deadlocked system. 
 

c) (10 pts) Some OS textbooks use the term “Limited Direct Execution” to 
describe the mechanism by which the OS can abstract and share a 
physical CPU (or core) between programs. For instance, in the book 
Operating Systems: Three Easy Pieces, Arpaci-Dusseau & Arpaci-
Dusseau describe this mechanism as follows: 
 
In order to virtualize the CPU, the operating system needs to somehow 
share the physical CPU among many jobs running seemingly at the same 
time. The basic idea is simple: run one process for a little while, then run 
another one, and so forth. By time sharing the CPU in this manner, 
virtualization is achieved. (..) 
 
To make a program run as fast as one might expect, not surprisingly OS 
developers came up with a technique, which we call limited direct 
execution. The “direct execution” part of the idea is simple: just run the 
program directly on the CPU. Thus, when the OS wishes to start a 
program running, it creates a process entry for it in a process list, allocates 
some memory for it, loads the program code into memory (from disk), 
locates its entry point (i.e., the main() routine or something similar), jumps 
to it, and starts running the user’s code. (...)  
 
Sounds simple, no? But this approach gives rise to a few problems in our 
quest to virtualize the CPU. The first is simple: if we just run a program, 
how can the OS make sure the program doesn’t do anything that we don’t 
want it to do, while still running it efficiently? The second: when we are 
running a process, how does the operating system stop it from running 
and switch to another process, thus implementing the time sharing we 
require to virtualize the CPU? 

 
i. (4 pts) Answer question 1: “how can the OS make sure the program 

doesn’t do anything that we don’t want it to do, while still running 
efficiently?” 
 

The OS runs user programs in a mode with restricted privileges (i.e., user mode). 
(User mode is an execution mode in which attempts by the program to directly 



CS 3214  Sample Midterm (Spring 2018) 
 

13/13 

access privileged system resources are rejected by the CPU, leading to a trap 
that the OS must handle.)  
 
For a correct answer, it sufficed to say “user mode” or “less privileged mode.” 

 
ii. (6 pts) Answer question 2: how can the OS “stop [a program] from 

running and switch to another process”? (Note: the question asks 
for 2 related, but separate things: how to stop, and how to switch.) 

 
The OS stops programs from running through the use of interrupts, such as timer 
interrupts, which force a transfer into kernel mode even if the program does not 
make a system call or yield. 
 
To switch to another process, the OS must save the state of the current process 
and restore (or create) the state of the process to which it is switching (aka 
perform a context switch). 
 
A correct answer needed to include some viable means of CPU preemption (e.g. timer interrupts), 
as well as a discussion that the OS must switch between contexts in a way that involves saving & 
restoring the user processes’ state. 
 
Many students here talked about signals, but time-sharing is an independent concept, and the 
context of the question made it clear that the question asked how a process in “limited direct 
execution” – running in usermode directly on the CPU can be stopped and then switch to another 
process. 
 


