
CS 3214  Sample Midterm (Fall 2014) 
 

1/12 

Sample Midterm (Fall 2014) 
 
Solutions are shown in this style. This exam was given Fall 2014. 
 

1. Compiling and Linking (25 pts) 
a) (12 pts) Separate Compilation. Consider the following two .c files, which 

both include the same .h file: 
/* link.h */ 
extern int v[], w[], u[]; 
void add_u_and_v(void); 

// link1.c 
#include "link.h" 
 
int w[2], v[2], u[2]; 
void add_u_and_v() { 
    w[0] = u[0] + v[0]; // stmt 3 
    w[1] = u[1] + v[1]; // stmt 4 
} 

// link2.c 
#include "link.h" 
#include <stdio.h> 
 
extern int u[3], v[3], w[3]; 
 
int 
main() 
{ 
    v[0] = 1, v[1] = 2, v[2] = 3;   // statement 1 
    u[0] = 4, u[1] = 5, u[2] = 6;   // statement 2 
    add_u_and_v(); 
    printf("%d %d %d\n", w[0], w[1], w[2]); 
    printf("v is at %p\n", v); 
    return 0; 
} 

 
A user tries to build this obviously wrong program like so: 
 
$ gcc -Wall link1.c link2.c -o link 

 
(i) (2 pts) Will there be any warnings?  

 
No, not even with –Wall. The code of each .c file is entirely correct C code. 
 

(ii) (10 pts) Once built, the program outputs: 
 

$ ./link 
10 7 4 
v is at 0x600988 

 



CS 3214  Sample Midterm (Fall 2014) 
 

2/12 

From this output, infer where the linker allocated the variables v, w, and u! 
Assume sizeof(int) == 4! Describe the working of this program by 
sketching how the values it outputs are computed! 
 
 

(6 pts) Create as many columns in this table as there are different memory 
locations involved. Use C syntax for symbolic names, e.g. v[0] 

symbolic names 
from the 
perspective 
of link1.c 

w[0] w[1] u[0] u[1] v[0] v[1]  

symbolic names 
from the 
perspective of 
link2.c 

w[0] w[1] w[2]/ 
u[0] u[1] u[2]/v[0] v[1] v[2] 

virtual addresses 
in 0x….. notation 0x600978 0x60097C 0x600980 0x600984 0x600988 0x60098C 0x600990 

(4 pts) Below, fill in the values that are stored in memory after each statement 
(refer to source code), in the columns you’ve created 

after statement 1     1 2 3 
after statement 2   4 5 6   
after stmt 3 10       
after stmt 4  7      

 
As you can see, the different views of the two separately compiled units resulted 
in v[2] being written past the end of the allocated memory, and in completely 
unintended results being computed and output. 
 

b) (5 pts) Using static. Consider the following program: 
 

 
// statics.c 
static int c; 
void f(int v) { 
    static int c; 
} 
 
void g(int v) { 
    static int c; 
} 

 

 
$ gcc –c statics.c 
$ nm statics.o 
0000000000000000 b c 
0000000000000008 b c.1595 
0000000000000004 b c.1599 
0000000000000000 T f 
0000000000000009 T g 

 

 
When compiled the symbol table shown in the right column results. 
 

(i) (3 pts) Why did the compiler introduce symbols c.1595 and 
c.1599? 



CS 3214  Sample Midterm (Fall 2014) 
 

3/12 

 
All three static variables ‘c’ are distinct and need separate storage, so the 
compiler appended some running count to produce different symbols. Generally, 
symbols defined outside of functions will appear with the C-name in the symbol 
table (on some systems, with a _ prefix). 
 

(ii) (2 pts) Why does it appear that ‘c’ is allocated at address 0 
(0000000000000000)? 

 
This is the symbol table shown after compilation, before linking. The assembler 
lays out each .o section’s symbols using consecutive addresses, starting from 0 
since it does not know yet where the symbol will be ultimately allocated, which is 
the linker’s job. 
 

c) (4 pts) A “best practice” when writing large C programs is to declare 
variables that are used only within multiple functions of one .c file using 
the static modifier. What is the rationale behind this recommendation? 

 
To avoid namespace pollution. If not declared static, the name will be visible to 
all .o modules, inviting clashes or unintended resolution if they also define 
variables of that name. 

 
d) (4 pts) Making pie. 

 
// mmmh, pie.c 
#include <stdio.h> 
 
int data[1]; 
int 
main() 
{ 
    printf("main %p\n", main); // %p means print address of 
    printf("data %p\n", data); 
} 

 
 When built and run like so, this output results: 
 

$ gcc -pie -fPIC pie.c -o pie 
$ ./pie 
main 0x2aabb126272c 
data 0x2aabb1462b58 
$ ./pie 
main 0x2abd2bd8672c 
data 0x2abd2bf86b58 
$ ./pie 
main 0x2b3a60c5672c 
data 0x2b3a60e56b58 

  
(i) (2 pts) Based on this observation, conclude what –pie does!  



CS 3214  Sample Midterm (Fall 2014) 
 

4/12 

 
Ordinarily, executables are linked such that the .text segment and the .data 
segment (where ‘main’ and ‘data’ are allocated, respectively) are at constant 
addresses determined by the linker. In this example, different addresses are 
chosen at each run, which means the executable must have been built in a way 
that allows it to be relocated at runtime and be loaded at different addresses. 
“PIE” stands for position-independent executable, and it is used for executables 
that are particularly fortified against exploits. 
 

(ii) (2 pts) If the program had not been built with –pie, what would its 
output have been? 

 
It would have been the same address each time, and the address would have 
been in a much lower range of the address space. For instance, 
 
$ ./pie.nopie  
main 0x4004c4 
data 0x6008b0 
 

 

2. Fork() and Exec() (22 pts) 
a) (14 pts) While practicing for the midterm, a CS 3214 student experimented 

with the fork() system call. As you know, fork() creates new processes that 
execute concurrently, and if multiple CPUs are available, in parallel. Here 
is the program they came up with, which attempts to parallelize the 
addition of a file with 1,000,000 numbers, read from standard input. The 
idea they tried to implement is to use a data-parallel approach, splitting the 
array into 10 pieces, and have each child process work on one piece, then 
add together the results.  

 
// forkadd.c 
#include <stdio.h> 
#include <stdlib.h> 
 
#define N 1000000 
int 
main() 
{ 
    int i, j; 
    double *bigarray = malloc(N * sizeof(bigarray[0])); 
    for (i = 0; i < N; i++) 
        scanf("%lf", bigarray+i); 
     
    double sum = 0.0; 
    int children_done = 0; 
    // distribute work across 10 child processes 
    for (j = 0; j < 10; j++) { 
        if (fork() == 0)  {  
            // child 'j' sums up interval [N*j/10, N*(j+1)/10-1] 



CS 3214  Sample Midterm (Fall 2014) 
 

5/12 

            double childsum = 0.0;  // use separate var for each child 
            for (i = 0; i < N/10; i++) 
                childsum += bigarray[j * N/10 + i]; 
 
            sum += childsum;        // add to total when done 
            children_done += 1; 
        } 
    } 
 
    // reap children before examining the result 
    for (j = 0; j < 10; j++) 
        wait(NULL); 
 
    // double check that all children are done, output the result 
    if (children_done == 10) 
        printf("%lf\n", sum); 
    return 0; 
} 
 

(i) (2 pts) If the compiled program is called ‘forkadd’ and the data 
resides in a file called ‘big.in’, what does the user need to type 
on the command line to execute this program?  

 
The user types 

 
$ ./forkadd < big.in 

 
 

(ii) (12 pts) The students show this program to their TA. The TA looks 
at the program briefly and says this program cannot possibly work. 
Does this program work?  (We define “work” as outputting the 
correct sum of the numbers in the input file. Ignore possible floating 
point issues such as overflow or associativity!)  
Justify your answer and provide a detailed explanation for why the 
program works (or does not work)! 

 
The program works – it in fact outputs the correct sum of the numbers in the 
input file. 
 
The TA was right to be confused, however, because it does not work in the way 
the writer intended.  Unlike when creating threads, fork() creates a child process 
that is initially a clone of the parent, but which is given a separate copy of all 
state – including variables such as childsum, children_done, and a copy of 
everything in bigarray.  Updates to those variables will not propagate to the 
parent in the way the code suggests, so the entire approach is bogus. 
 
Why, then, does it produce the correct result?  Note that each child process that 
is created does not call exit(), but actually continues in the for loop forking more 
children. Eventually, each child process will exit the loop, call wait(), then check 



CS 3214  Sample Midterm (Fall 2014) 
 

6/12 

its copy of children_done and exit silently if it is not 10. (Note that wait(NULL) will 
not block, but fail silently if a process does not have currently have any unreaped 
children.) 
 
So, the initial process spawns 10 children, the first child spawns 9 children, the 
first of which will spawn 8 more, the second 7 more, and so on. The second child 
spawns 8 children, each of which will produce even more. The total number of 
processes spawned this way is 2^n = 1024. Only one of those children – the one 
spawned last - will have children_done set to 10, and the correct sum in ‘sum’ – it 
computes the last 1/10th, inherited the result of the first 9/10th from its parent, who 
in turn inherited the result of sum representing the first 8/10th from its parent, and 
so on. 
 
Don’t believe it? Try it: 
http://courses.cs.vt.edu/~cs3214/fall2014/gback/examples/fork/forkadd.c 
And the data is available here: 
http://courses.cs.vt.edu/~cs3214/fall2014/gback/examples/fork/big.in 
 

b) (8 pts) In the sample midterm exams, a CS 3214 student saw how 
programs such as /usr/bin/time are implemented using the exec() system 
call. For instance, the following command executes the /bin/id program 
and outputs how long it took. 
 

$ time id 
uid=979801(cs3214) gid=16151(cs3214) groups=16151(cs3214),16144(cs2505) 
 
real    0m0.002s 
user    0m0.000s 
sys     0m0.002s 
 

The student now attempts to implement a toy version of /usr/bin/time like so: 
 
// mytime.c: simplified /usr/bin/time 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/time.h> 
 
int 
main(int ac, char *av[]) 
{ 
    struct timeval start, end; 
    gettimeofday(&start, NULL); // take begin time stamp 
    execvp(av[1], av + 1);      // execute program 
    wait(NULL);                 // wait for it to finish 
    gettimeofday(&end, NULL);   // take end time stamp 
    printf("took %ds\n",   // print time taken rounded down to the nearest sec 
                end.tv_sec - start.tv_sec); 
    return 0; 
} 
 

http://courses.cs.vt.edu/%7Ecs3214/fall2014/gback/examples/fork/forkadd.c
http://courses.cs.vt.edu/%7Ecs3214/fall2014/gback/examples/fork/big.in


CS 3214  Sample Midterm (Fall 2014) 
 

7/12 

A 

B 

D 

F E 

C 1 
1 

1 
1 

2 

1 

2 

i) (4 pts) Will this problem work in the intended way, i.e., to run any 
program and output how long it took?  Justify your answer! 

 
No it won’t. exec() replaces the current program with a new program, so the line 
calling wait() (and everything below it) will not be run if the exec() was successful. 
To implement time, one needs to fork() and have the child exec() the command 
to be executed. 
 

ii) (4 pts) What is output when running the program like so? 
 
$ ./mytime id 

       uid=979801(cs3214) gid=16151(cs3214) groups=16151(cs3214),16144(cs2505) 
 

It will still exec() the ‘id’ program so the output will be something like you see 
above, just no “took …s” message following it. 
 
 
 
 

3. Multithreading 
(28pts) 
a) (20 pts) Semaphores. 

Consider the following 
dependency graph 
between 6 hypothetical 
tasks A through F: In this 
graph, edges are labeled 
with numbers that represent how many signals a task must produce 
before the dependent task can run. For instance, C cannot run until E 
signals it at least once. Implement this graph using threads and 
semaphores.  
Model the tasks as simple printf() statements as shown below, and use 
semaphores’ signaling facilities to implement the precedence constraints!  
// declare any semaphores here 
sem_t ab, ae, ec, bc, ef, fd, cd; 
 
 
static void* 
thread_A(void *_) 
{ 
    printf("A"); 
    sem_post(&ab); 
    sem_post(&ae); 
    sem_post(&ae); 
    return 0; 
} 

static void* 
thread_D(void *_) 
{ 
    sem_wait(&cd); 
    sem_wait(&cd); 
    sem_wait(&fd); 
    printf("D"); 
    return 0; 
} 

static void* 
thread_B(void *_) 

static void* 
thread_E(void *_) 



CS 3214  Sample Midterm (Fall 2014) 
 

8/12 

{ 
    sem_wait(&ab); 
    printf("B"); 
    sem_post(&bc); 
    return 0; 
} 

{ 
    sem_wait(&ae); 
    sem_wait(&ae); 
    printf("E"); 
    sem_post(&ec); 
    sem_post(&ef); 
    return 0; 
} 

static void* 
thread_C(void *_) 
{ 
    sem_wait(&bc); 
    sem_wait(&ec); 
    printf("C"); 
    sem_post(&cd); 
    sem_post(&cd); 
    return 0; 
} 

static void* 
thread_F(void *_) 
{ 
    sem_wait(&ef); 
    printf("F"); 
    sem_post(&fd); 
    return 0; 
} 

int 
main() 
{ 
#define N 6 
    int i; 
    pthread_t t[N]; 
 
    // initialize your semaphores here. For each semaphore, show their initial value! 
 
    sem_t *s[] = { &ab, &ae, &ec, &bc, &ef, &fd, &cd }; 
    for (i = 0; i < sizeof(s)/sizeof(s[0]); i++) 
        sem_init(s[i], 0, 0); 
 
     // ------------------------------------------ 
    void * (*f[])(void *) = { thread_A, thread_B, thread_C,  
                              thread_D, thread_E, thread_F }; 
    for (i = 0; i < sizeof(f)/sizeof(f[0]); i++) 
        pthread_create(t+i, NULL, f[i], NULL); 
    pthread_exit(0); 
} 
 

i) (15 pts) Complete the code! Don’t forget to show the initialization of 
each semaphore! 

 
(please fill answers in table above before/after each printf() statement.) 

 
ii) (5 pts) Among all possible outputs of this program, provide the 3 that 

are alphabetically first, i.e. the lexicographically smallest! 
 
 
Since the graph represents a dependency graph, any topological sorting of the 
graph is a possible output. There are a total of five: 
 

1) ABECFD 



CS 3214  Sample Midterm (Fall 2014) 
 

9/12 

2) ABEFCD 
3) AEBCFD 
4) AEBFCD 
5) AEFBCD 

 
The first three, in lexicographical order, are ABECFD, ABEFCD, and AEBCFD. 
 

b) (8 pts) Condition Variables. Consider the following snippet from a thread 
pool implementation: 

 
// code that removes tasks from global submission queue 
pthread_mutex_lock(&globalqueue_lock); 
while (list_empty(&globalqueue)) 
    pthread_cond_wait(&globalqueue_cond, &globalqueue_lock); 
 
// release lock before checking shutdown flag in case it is true 
pthread_mutex_unlock(&globalqueue_lock); 
if (pool->shuttingdown) 
    return; 
 
// now process global task 
pthread_mutex_lock(&globalqueue_lock); 
struct future *f = list_entry(list_pop_front(&globalqueue),  
                              struct future, elem); 
// run task 
f->result = f->func(f->data); 
pthread_mutex_unlock(&globalqueue_lock); 

 
There are two concurrency-related defects in this code.  
Describe them and discuss their possible impact! 
 

i) (4 pts) Defect I 
 

Releasing the lock after checking if the global queue is empty, then reacquiring it 
later to pop the item from the queue is an atomicity violation. The queue might 
have been changed by another thread in the interim, even under a correct 
locking discipline, and might be empty again by the time the item is popped. 
 

ii) (4 pts) Defect II 
 
As those of you who completed the fork/join project will have undoubtedly 
noticed, holding a lock during the execution of a task results either in deadlock or 
loss of parallelism since it serializes the execution of all tasks on this lock, so that 
only one can run at a time. 
 

4. Big Picture Issues (15 pts) 
Reflecting on the esh project, you may recall the following lecture slide: 



CS 3214  Sample Midterm (Fall 2014) 
 

10/12 

 
Answer the following questions: 
 

a) (3 pts) What “external entities” that are “subject to change” does this slide 
talk about? 

 
The processes started by the shell. 
 

b) (3 pts) What “state,” specifically, does the shell care about? 
 

It cares if those processes have exited, been terminated with a signal, or stopped 
due to job control or terminal access requirements. If so, the shell informs the 
user. 

 
c) (3 pts) Why are changes of this state “outside of the program’s control?” 

(the “program” here refers to the shell.) 
 

The state changes depend on only what the program does, or input by the user 
(^C, ^Z), neither of which the shell controls. 

 
d) (3 pts) Why are signals an “imperfect” tool? 

 
For at least two reasons: first, they don’t queue, which means that multiple 
children exiting results in only one SIGCHLD, forcing the shell to call waitpid() to 
figure out which children are affected. Second, once pending, they can’t be 
canceled. So if SIGCHLD becomes pending during a waitpid() call, the child 
might be reaped there, but the signal will come through and appear spurious. 
 

 
e) (3 pts) How does a shell ensure the “correctness of its data” in the face of 

asynchronous interruptions? 
 



CS 3214  Sample Midterm (Fall 2014) 
 

11/12 

A common way is to block those signals (SIGCHLD) during sections of the code 
in which the delivery of signals could lead to corruptions. 
 

5. Reasoning about Process States (10pts) 
Understanding the demand a program imposes on systems resources is a crucial 
skill for effective application programmers. Common sense dictates that one 
should design applications that do not create unnecessary processes or threads, 
but what are the actual resources a system must provide? The answer depends 
on the state a process or thread is in. Provide examples: 
 

a) (3 pts) If a process is in the BLOCKED or READY state, it occupies the 
following system resources (name at least 3): 
 
Examples include: 
 

- Entry in the process table 
- Some kind of memory to hold their data and code (ignoring details of 

virtual vs physical for now) 
- File descriptors referring to kernel objects such as open files, pipes, etc. 
- Kernel memory to hold their state so that they can be resumed 

 
b) (2 pts) If a (single-threaded) process is in the RUNNING state, it occupies 

the following resources in addition: 
 
It also uses a CPU/core. 

 
c) (2 pts) Assume a kernel-level threading implementation. If a new thread is 

created, the system must allocate the following resources. Do not include 
resources listed in a) or b) that are part of the containing process.  
Name 2: 
 

A new thread needs an entry in the thread/process table as well as space to 
hold its execution state if it is blocked. It also needs space for its stack. 
(Actually, two separate stacks are allocated – one for when it runs code in 
user mode, and one when it runs code in kernel mode.) 

 
d) (3 pts) Can a process figure out what state (RUNNING, READY, 

BLOCKED) it is currently in?  
If so, sketch how. If not, say why not! 

 
A process that’s executing code is, by definition, currently in the RUNNING 
state, so the question has a trivial answer.  
 
That said, if the question had been could a process figure out if it was 
RUNNING or READY in the past: a process could record timestamps while it 



CS 3214  Sample Midterm (Fall 2014) 
 

12/12 

is running and thus create a time line of when it was actually RUNNING, and 
by inversion conclude that it must have been preempted and in the READY 
state during those times for which it does not have timestamps. Similarly, a 
process could time the duration of system calls to infer if it was BLOCKED in 
those calls. 

 


	1. Compiling and Linking (25 pts)
	2. Fork() and Exec() (22 pts)
	3. Multithreading (28pts)
	4. Big Picture Issues (15 pts)
	5. Reasoning about Process States (10pts)

