
CS 3214 Sample Midterm (Fall 2011)

1/12

Sample Midterm (Fall 2011)

This exam was given in Fall 2011.

1. Compiling and Linking (18 pts)
a) (14 pts) Separate Compilation. Consider the following two .c files which

both include the same .h file:

// a.h

(1) static int inc(int x) { return x + 1; }

(2) static int x;

(3) extern int y; // or empty

(4) int z;

(5) extern void b(void); // or empty

// a.c

#include "a.h"

#include <stdio.h>

(6) int y = 1;

(7) extern int w; // or empty

(8) static int v = 5;

int main()

{

 x = inc(0);

 z += 4;

 b();

 printf("x = %d y = %d z = %d "

 "w = %d v = %d\n",

 x, y, z, w, v);

 return 0;

}

// b.c

#include "a.h"

(9) int w = 4;

(10) int v = 5; // or static

void b() {

 x = inc(x);

 y++;

 z--;

 v++;

}

When compiled, linked, and executed, the following output results:

$ gcc -Wall a.c b.c -o a

$./a

x = 1 y = 2 z = 3 w = 4 v = 5

Assuming that this program compiled and linked successfully, and based

on the output shown above, add static and/or extern modifiers to the

blank lines (1) through (10)! Leave them blank if neither modifier would be
appropriate! Any correct solution that results in successful compilation and
the output shown above will be accepted.

Explanation:

(1) Needs to be static, or else linking fails due to 2 conflicting strong symbols
‘inc’ with an “already defined” error

CS 3214 Sample Midterm (Fall 2011)

2/12

(2) x must be static. If it weren’t, and a.c and b.c shared the same x, its value
would be 2, not 1.

(3) y should be extern (it must be shared between a.c and b.c, else its value
wouldn’t be 2.) However, leaving it without modifier works also (fwiw, int y;
followed by int y = 1; compiles and the strong definition is used.) It cannot
be static.

(4) z’s modifier must be blank so that ‘z’ becomes a common symbol (shared,
but weak). If extern were used, z would be nowhere defined (undefined
reference error). If static were used, it would have the value 4, not 3. Note
that defining ‘z’ in a header file is generally considered bad practice.

(5) Should be extern (or left blank, which has identical semantics for
functions.) If it were static, ‘b’ would be undefined in a.c

(6) Must be blank – static would conflict with the earlier declaration of y in the
header file. Extern, which declares a variable, is incompatible with an
initialization, which can only be used with a definition.

(7) Like (3), can be extern or blank. Note that neither choice is good design. If
extern, the declaration should appear in a header. If blank, the definition is
redundant (and will be dominated by b.c’s strong definition of w.

(8) Must be static since the value printed is 5 – a.c has its own copy of ‘v’
(9) Must be blank so that ‘w’ is defined globally. If static, a.o would have an

resolved reference. Like (6), you cannot use extern with a definition.
(10) Could be blank or static. b.c could operate on a global symbol for

‘v’, or have a local copy – either way, it will not affect the output. Like (9), it
cannot be extern.

This question had a significant flaw in that I didn’t ask you to explicitly note when
you meant to omit a modifier. The default answer (simply leaving everything
empty) yielded 10/14 points. Future versions of this question will require you to
distinguish between “not answering” and “no modifier”.

b) (4 pts) Dynamic Linking. One of the features AMD added to the IA32
instruction set when introducing the now-dominant x86_64 architecture
was an addressing mode that allows access to data relative to the

instruction pointer (e.g., using displacement(%rip)). Explain how the

compiler makes use of this feature when creating dynamic libraries, and
position-independent code in particular!

Position-independent code can be loaded at any location in a process’s address
space. To find out where a particular function or variable is located, indirection is
used in which the address of the function or variable is stored in a location with
the global offset table. The shared object is built such that the global offset table
is located at a known offset from the instruction pointer, no matter where the
shared object is located in a process’s address space. Being able to access the
instruction pointer directly is convenient because it avoids the need for PC
materialization (e.g. doing a call to a compiler-generated subroutine just to learn

CS 3214 Sample Midterm (Fall 2011)

3/12

what address was pushed onto the stack, as is done in 32-bit position-
independent code.)

2. X86_64 Programs (25 pts)
The following questions relate to how programs are compiled and optimized for
x86_64.

a) (20 pts) Understanding x86_64 Assembly Code.

Consider the following function (which may be familiar to fans of

projecteuler.net), shown in C as well as compiled with gcc –O3 –S:

int problem301() {

 int n, s = 0;

 for (n = 1; n <= (1<<30); n++)

 if ((n ^ (n + n) ^ (n + n + n)) == 0)

 s++;

 return s;

}

 .globl problem301

problem301:

 movl $3, %esi

 xorl %eax, %eax

 movl $1, %edx

.L3:

 leal (%rdx,%rdx), %ecx

 xorl %edx, %ecx

 cmpl %esi, %ecx

 sete %cl

 addl $1, %edx

 addl $3, %esi

 movzbl %cl, %ecx

 addl %ecx, %eax

 cmpl $1073741825, %edx

 jne .L3

 rep

 ret

i. (3 pts) Which register holds the value of ‘n’?

$edx

ii. (3 pts) Which register holds the value of ‘s’?

$eax

iii. (14 pts) Even though the original code contained one for-loop and one

if-statement, which would ordinarily result in the use of (at least) two

CS 3214 Sample Midterm (Fall 2011)

4/12

conditional branches, the optimizing compiler was able to compile this

code using just one conditional branch (jne .L3). In doing so, the

compiler exploited arithmetic transformations that optimized the code
without changing the outcome of the operations performed. Provide an
alternate C version of ‘problem301’ that has the same characteristics
(i.e., a single loop, no if-statement, 4 additions, 2 compares, and 1
xor), illustrating the transformations the compiler performed!

int problem301() {

 int n, n3 = 3, s = 0;

 for (n = 1; n <= (1<<30); n++, n3+=3)

 s += ((n + n) ^ n) == n3;

 return s;

}

The compiler keeps n + n + n in a separate register ($esi), which is incremented
by 3 in each iteration. This can be expressed as a separate C variable n3 = 3 * n.
The comparison n ^ (n+n) ^ (n+n+n) == 0 is replaced with n ^ (n + n) == (3 * n)
based on the fact that a == b iff a^b == 0. Also note that C guarantees that the
value of a == b is 1 if a is equal to b, and 0 otherwise.

b) (5 pts) Ignoring Compiler Warnings. Despite pervasive evidence and

ongoing encouragement to the contrary, some students still believe that

compiler warnings such as warning: implicit declaration of

function are innocuous and can be ignored because they do not affect

the correctness of their programs. Consider the following two separately
compiled .c files:

// getidcall.c

#include <stdio.h>

int

main()

{

 printf("%ld\n", (long)getid());

 return 0;

}

// getid.c

long getid()

{

 return 0x100000000;

}

During compilation on a Linux x86_64 system such as the one used for
the projects, the following warning is displayed:

$ gcc -Wall getidcall.c getid.c -o getidcall

getidcall.c: In function ‘main’:

getidcall.c:7: warning: implicit declaration of function ‘getid’

Since –Werror is not given, gcc built an executable ‘getidcall’ that can be

executed. However, it may or may not work. Fill in the blank in getid.c with

CS 3214 Sample Midterm (Fall 2011)

5/12

any constant value such that ‘getidcall’ fails when run (i.e., does not

print the value returned by getid())!

When a function is not declared, the C compiler substitutes a default definition in
which this function returns ‘int’. Consequently, the compiler will only consider the
lower 32-bits of the result, sign-extending them like so:

 4004a1: e8 1a 00 00 00 callq 4004c0 <getid>

 4004a6: 48 63 f0 movslq %eax,%rsi

As a result, any value for which sign-extension from 32-bit to 64-bit changes the
value when interpreted as a 64-bit integer will cause the program to fail, such as
0x100000000. getidcall then prints 0. More precisely, any value that doesn’t have
all 1s or all 0s in bit positions 63 to 31 (with 63 being msb) will cause the program
to fail. Note that -1 is not one of them. Sign-extending 0xFFFFFFFF yields
0xFFFFFFFFFFFFFFFF, which prints as -1.

3. Security (24 pts)

The following questions explore the relationship between program execution and
system security.

a) (8 pts) In lecture, we had discussed that modern processors provide
hardware support for dual-mode operation in which the processor traps
when a program attempts to execute a privileged instruction when run in
user mode.

i. (4 pts) In what way does this feature contribute to a system’s
security?

It protects the system’s security by preventing direct access to low-level
hardware resources such as CPU power control, the MMU, or to I/O ports from
(potentially compromised) user applications, even applications running with
administrative privileges.

ii. (4 pts) Why does this feature provide only limited protection against

most current security attacks?

Direct, low-level access to hardware resources is not required, and usually not
used, for most attacks to do significant damage. Compromised processes will
ask the kernel to provide it with access to any resource they need for their
purpose (e.g. installing backdoors, deleting files, etc.), usually after attempting to
gain administrative privileges. There are a (relatively) small number of attacks
against kernels, in which case an attacker’s code would run in kernel mode and
could execute privileged instructions.

CS 3214 Sample Midterm (Fall 2011)

6/12

b) (4 pts) In lecture, we had discussed that most modern systems exploit
address space layout randomization (ASLR) to avoid canonical stack
overflow attacks such as the one you constructed in project 2.
Has the wide-spread use of ASLR made stack-based buffer overflow
vulnerabilities benign? Justify your answer!

No. Even though an attacker may not gain control of the machine, they usually
succeed in denying service to users because a vulnerable program will likely
crash when attacked. There is also a residual likelihood that the attacker will
guess correctly and the attack will succeed.

A common misconception was that nop sleds can render ASLR useless. That’s
not the case. Nop sleds help with small variations, such as those introduced by
different values for environment variables, but the variations introduced by ASLR
are so large that a nop sled would need to be very big, typically much larger than
the entire stack segment. In this case, a segmentation fault will occur when the
vulnerable function attempts to write the nop sled onto the stack because it would
reach into the unmapped address space above the stack.

A second misunderstanding was that an attacker would have multiple tries to
guess the correct address. In fact, it varies from run to run and a failed guess
leads to the termination of the program; if the program is restarted, it’ll have its
stack at a new address.

It is true that in 32-bit systems, the smaller virtual address space leaves less
room for which address to choose for the stack, this fact, in combination with
other factors, increases an attacker’s likelihood of success. That’s not true in
today’s 64-bit systems, however. For an example of exploiting the limited
randomness in 32-bit systems, see Shacham et al. “On the effectiveness of
address-space randomization” http://dl.acm.org/citation.cfm?id=1030124

c) (6 pts) Some attacks against vulnerable programs rely on knowing, or

predicting with some certainty, the addresses of dynamically allocated
objects. For this reason, current system attempt to randomize heap
addresses where possible. Based on your knowledge of explicit memory
allocators as discussed in class, describe 2 ideas for how an allocator’s
policies could be varied to achieve such randomization!
(continued on next page)

Many ideas are possible. Allocators could vary

- The start of the heap (picking a random initial brk)
- The placement policy (maybe choose randomly from ‘first-fit’, ‘second-fit’,

‘third-fit’ policies for each allocation)

http://dl.acm.org/citation.cfm?id=1030124

CS 3214 Sample Midterm (Fall 2011)

7/12

- Padding of objects – adding a small random amount to each object will
introduce variation.

- The splitting policy – toss a coin to split from the top vs. bottom
- The coalescing policy – perform or delay coalescing based on a random

value
- The free block insertion policy (head or tail of free list, or at nth position)

In practice, in today’s Linux, only the start of the heap is varied, although other
ideas are being experimented with. See http://research.microsoft.com/en-
us/projects/robustheap/ for information on a Microsoft Research Project that
addresses this topic.

Note that acceptable answers needed to include a choice element that was acted
on with some randomization.

d) (6 pts) Some researchers have proposed system-call sandboxing, in

which a potentially vulnerable program that operates on data from
untrusted sources (such as PDF documents downloaded from websites) is
run in a “jail” or “sandbox” in which that program’s access to system calls
is controlled. Sandboxing does not address inherent vulnerabilities such
as buffer overflow vulnerabilities, and programs may still suffer from
attacks that allow the execution of an attacker’s injected machine code.
What, then, is the rationale for sandboxing?

The key rationale behind system call sandboxing is that system calls are a
process’s only means of interacting with the outside. Everything else a process
has access to (CPU, memory) is virtualized so that whatever a compromised
process does to it will not affect the outside (modulo resource consumption such
as CPU time or physical memory). This is a key principle of operating systems.

4. Processes in Unix (33 pts)
The following questions relate to how processes execute on Unix.

a) (4 pts) Process States. Recall the simplified process state diagram
discussed in lecture (consisting of states RUNNING, READY, and
BLOCKED).

In which state does a new process start its life after it is created in fork()?
Justify your answer!

It’s in the READY state. It could run and make use of the CPU as soon as it’s
being picked by the scheduler. It cannot be placed directly into the RUNNING
state because doing so requires action by the scheduler (and there may not be a
CPU available for it). It’s not BLOCKED because it’s not waiting for anything
besides a CPU.

http://research.microsoft.com/en-us/projects/robustheap/
http://research.microsoft.com/en-us/projects/robustheap/

CS 3214 Sample Midterm (Fall 2011)

8/12

In practice, some systems support a dedicated “NEW PROCESS” state to
perform long-term scheduling; admitted processes are then moved into the
READY state.

Note that I explicitly referred to the nomenclature of process states used in
lecture (RUNNING, READY, BLOCKED), with the meanings as discussed in
class. Linux has a different terminology; in Linux, a new process is in the
RUNNING state, though it will not necessarily have a CPU assigned to it. If you
answered “RUNNING” you would need to explicitly refer to Linux’s meaning of
RUNNING and discuss when/how a CPU will be assigned to the new process.

b) (15 pts) timeout. Unix’s design philosophy favors the use of many small

utility programs over large, monolithic services. In this problem, you are
asked to implement a ‘timeout’ utility which can be used to terminate any
program running longer than a set amount of (wall-clock) time. The
timeout command should take the number of seconds after which to
terminate the program as its first command-line argument, followed by the
command (including any arguments) which the user wants to run. If the
command exceeded the given timeout, a message “Timed Out.” should be
printed, otherwise, “Ok” should be printed. For example, using the
standard ‘sleep’ program, timeout would exhibit the following behavior:

$./timeout 2 sleep 1

Ok.

$./timeout 2 sleep 4

Timed out.

Complete timeout.c, shown on the next page!

 Additional stipulations:

o If the program exits before the timeout has expired, ‘timeout’ should
print “Ok” immediately.

// timeout.c

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <signal.h>

#include <sys/wait.h>

#include <errno.h>

static int child;

static void alarmhandler(int sig)

{

 kill(SIGTERM, child);

 printf("Timed out.\n");

 exit(EXIT_FAILURE);

}

CS 3214 Sample Midterm (Fall 2011)

9/12

int

main(int ac, char *av[])

{

 int seconds = atoi(av[1]);

 if ((child = fork()) == 0) {

 execvp(av[2], av+2);

 perror("execvp:");

 exit(EXIT_FAILURE);

 }

 signal(SIGALRM, alarmhandler);

 alarm(seconds);

 waitpid(child, NULL, 0);

 sigblock(sigmask(SIGALRM));

 printf("Ok.\n");

 exit(EXIT_SUCCESS);

}

Simply arming the timer and executing the desired program (without forking a
new process) will not work since signal handlers are reset to their defaults on
exec() (since the child will not have the handler function).

To avoid being interrupted in printf(“Ok\n”) if the alarm goes off right after the
child exited, SIGALRM must be blocked for the subsequent printf() call, which is
not async-signal-safe.

The example shows the old-style signal API (signal, sigmask) but keep in mind
that new applications should use the corresponding POSIX API (sigaction,
sigprocmask).

Other approaches are possible, such as setting both a SIGCHLD and SIGALRM
handler, then pause()ing the main program.

c) (9 pts) Pipes. Shells use the Unix system call pipe(2) to connect a

program’s standard output to another program’s standard input. Some of
you have implemented this in your shells. Here is an example program
that shows how such redirection works. It implements a program

‘spipe.c’, which starts two child processes whose standard input/output

is connected through a pipe. In other words, ./spipe program1

program2 is equivalent to running program1 | program2 in a shell

that supports pipes:

$./spipe uname cat

Linux

$ uname | cat

Linux

$./spipe uname wc

 1 1 6

CS 3214 Sample Midterm (Fall 2011)

10/12

$ uname | wc

 1 1 6

For simplicity, spipe does not support passing on any arguments to the
commands it launches. For presentation purposes, error handling was
omitted as well.

// spipe.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

/* Launch a child process, redirect its standard out to stdout,

 * standard in to stdin. Also close 'fdtoclose' in child.

 * Close any redirected file descriptors in parent before

 * returning. Returns pid of child process.

 * (Implementation not shown.)

 */

int launch_child(char *prgname, char *prgargv[],

 int stdout, int stdin, int fdtoclose);

int

main(int ac, char *av[])

{

 char *firstprogargv[] = { av[1], NULL };

 char *secondprogargv[] = { av[2], NULL };

 int pipefd[2];

 pipe(pipefd); // create pipe

 // launch first child

 pid_t leftchild = launch_child(av[1], firstprogargv,

 pipefd[1], 0, pipefd[0]);

 waitpid(leftchild, NULL, 0); // reap first child

 // launch second child

 pid_t rightchild = launch_child(av[2], secondprogargv,

1, pipefd[0], pipefd[1]);

 waitpid(rightchild, NULL, 0); // reap second child

 return EXIT_SUCCESS;

}

Users observed the following behavior of spipe. For many combinations of

programs, spipe appears to work as intended. For some (such as ‘./prog2’),

however, it “gets stuck.” When it gets stuck, ps shows:

$ ps f

 PID TTY STAT TIME COMMAND

24889 pts/9 Ss 0:00 -bash

31462 pts/9 S 0:00 _ ./spipe ./prog2 wc

31463 pts/9 S 0:00 | _ ./prog2

31490 pts/9 R+ 0:00 _ ps f

CS 3214 Sample Midterm (Fall 2011)

11/12

Based on this information, answer the following questions:

i. (3 pts) Does this apparent bug of spipe cause excessive CPU usage

on the machine on which the user runs it? Justify your answer!

No, all processes involved are in the BLOCKED state (Linux calls this ‘S’ for
Sleeping as can be seen in the output of ps), they do not use any CPU.

A frequent wrong answer was that the processes are STOPPED. Linux uses ‘T’ for STOPPED
processes (stopped for any reason, including SIGTSTP, SIGTTOU, SIGTTIN, SIGSTOP).
“Stopped” is different from “Sleeping.” A “stopped” process cannot proceed until SIGCONT is sent,
even if it is not blocked on any event and even if a CPU is available.

Another frequent wrong answer was that “stuck processes” eat up CPU time, or become zombies.

ii. (3 pts) Why does ‘spipe’ not finish? Be precise!

Pipes have finite capacity; when a process attempts to write to a full pipe, it is
blocked. Here, prog2 filled the pipe, then blocked when attempting further writes.
The process that consumes data from the pipe (wc in this case) hasn’t been
started because the parent spipe program is waiting for prog2 to finish first. A
deadlock results. If you’ve done thorough testing on your pipe implementation,
your testing should have covered this case, which I also discussed in class.

FYI, here’s my prog2.c, which writes exactly 64KB + 1 bytes.

#include <stdio.h>

int

main()

{

 int i;

 for (i = 0; i < 65537; i++)

 fputc('A', stdout);

 return 0;

}

Though the information provided didn’t allow you with certainty to conclude that prog2 is blocked
writing to its standard out stream, it allowed you to rule out a number of other scenarios. First, there
are no bugs with respect to file descriptors, or else spipe wouldn’t have worked at all. Second, the
command line shown in the ps output made it clear that prog2 is the first program in the pipe, not
the second, ruling out any answer that speculated that the second child had already exited.
Another frequent wrong answer was that some suspected a race condition with the waitpid() call,
“reaping” the child too early. Calling waitpid() to reap a child doesn’t terminate it, despite what the
imagery accompanying the term suggests. On the contrary, the use of waitpid() avoids any such
race conditions.

iii. (3 pts) Suggest a way to fix spipe!

CS 3214 Sample Midterm (Fall 2011)

12/12

Don’t wait for the first child until after both children have been forked; i.e. move
the ‘waitpid(leftchild, NULL, 0);’ call after the second call to launch_child(). This
will allow the children to run concurrently so that wc can drain the pipe whenever
prog2 writes into it.

d) (5 pts) Understanding Signals. Some groups in project 3 attempted to
implement the shell built-in command kill in the following fashion:

// jobid – id of job to be killed

// killsignal – number of signal to be used,

// e.g. SIGTERM or SIGKILL

void builtin_kill(int jobid, int killsignal)

{

 struct esh_pipeline * job = find_job_from_id(jobid);

killpg(killsignal, job->pgrp); // send kill signal

remove_job_from_job_list(job);

}

Why is this implementation approach incorrect?

Programs cannot assume that signals are delivered and acted upon immediately.
After the signal is sent, it may take some time for the process to receive it and act
on it. In addition, for some signals, such as SIGTERM, a process could decide to
block and/or ignore it. In this case, killpg() would not lead to the termination of
those processes and the shell should not assume it does. Instead, the shell must
wait for SIGCHLD, then call waitpid() to learn about the actual fate of the
process(es) the user attempted to kill.
Note that there are even situations where it takes a relatively long time for
processes to be terminated via SIGKILL, such as when processes are executing
in certain sections of kernel code.

The code contains a second, unintended mistake some of you spotted: I got the
argument order in killpg() wrong: it should be killpg(job->pgrp, killsignal).

We accepted for full credit both answers. A number of students thought that killpg() takes a
negative argument (it doesn’t – the negative argument trick is used in kill()), or that killpg() only
sends a signal to a process group’s leader rather than the entire process group. Also, we didn’t
accept answers such as “you have to block SIGCHLD while manipulating the jobs list,” which,
though true, would presumably be done in find_job_in_jobs_list and remove_job_from_job_list, but
the latter function shouldn’t be called from builtin_kill anyway.

