
CS 3214 Sample Final Exam (Fall 2014)

1/13

Sample Final Exam (Fall 2014)

Solutions are shown in this style. This exam was given in Fall 2014.

1. Explicit Memory Management (14 pts)
The following questions relate to explicit memory management.

a) (3 pts) Detecting usage errors. Programs that use explicit memory

management are notorious for the potential for programmer mistakes.
Consider the following C program as an example:

#include <stdlib.h>
int main()
{
 void * ptr = malloc(256);
 free(ptr);
 free(ptr);
}

When run under Linux, it outputs:

*** Error in `./dfree': double free or corruption (top):
0x0000000000f10010 ***
Aborted (core dumped)

How would you add the ability to output such warnings to your project 3
malloclab implementation?

This can be done simply by checking that the boundary tag header immediately
preceding the pointer passed to free() has the ‘inuse’ bit set. On the first free(),
the bit is reset. Subsequent attempts to free(), if they find the bit clear, will issue
the warning. Note that this check may have false negatives if intervening
allocations and deallocations reused the memory in which the boundary tag
header is located, or if the inuse bit was cleared by memory corruption.

b) (4 pts) Tolerating usage errors. Unlike in the previous question, where you
were asked to add facilities that would help detect usage errors, in this
question, you should describe 2 different techniques that you could add to
your allocator such that it would tolerate memory-related programming
errors!

Possible ideas include:

• Padding of allocated areas to tolerate index out-of-bound errors
• Delayed free to tolerate access-after-free errors

CS 3214 Sample Final Exam (Fall 2014)

2/13

• Zero-filling to avoid uninitialized access errors (e.g., unterminated strings)

For a system that does this, see “Rx: Treating Bugs As Allergies— A Safe
Method to Survive Software Failures” by Qin et al, SOSP’ 2005.
http://dx.doi.org/10.1145/1275517.1275519

c) (3 pts) Considering the
following picture from the
lecture slides, which shows the
memory layout of a segregated
fit allocator.

If you carefully study the image,
you find that it violates an
invariant that is commonly
found in allocators.

Which invariant is violated in
the depiction shown?

The picture shows two free blocks (for instance, the first two on the red list)
adjacent to each other, which means they were not coalesced properly (unless
the allocator uses delayed coalescing, which is less commonly done.) In an
ordinary segregated fit allocator, the blocks should have been coalesced and
added to the blue free list.

d) (4 pts) In project 2, some students implemented a custom memory
allocator for futures by maintaining a list of free futures for each worker
thread, as sketched below:

/* Submit a callable to FJ pool, returns future */
struct future * thread_pool_submit(struct thread_pool * pool,
 fork_join_task_t callable,
 void *callable_data)
{
 struct future * f;
 struct worker * worker = current_worker; // thread-local variable
 if (worker == NULL || worker->nfree_futures == 0) {
 f = malloc(sizeof *f);
 } else {
 worker->nfree_futures--;
 f = list_entry(list_pop_front(&worker->free_futures),
 struct future, elem);
 }
 // code where future is initialized and submitted to the pool elided
 return f;
}

/* Deallocate this future. */

http://dx.doi.org/10.1145/1275517.1275519

CS 3214 Sample Final Exam (Fall 2014)

3/13

void
future_free(struct future *f)
{
 struct worker * worker = current_worker;
 if (worker == NULL) { // external thread, e.g., main
 free(f);
 } else {
 list_push_back(&worker->free_futures, &f->elem);
 worker->nfree_futures++;
 }
}

Describe one advantage and one disadvantage of this idea!

i. (2 pts) Advantage

Advantages include:

• No potential for contention when acquiring a lock in malloc() since the free
list is per-thread.

• Constant time allocations: allocations from the per-worker free list are
guaranteed to be constant time O(1), which may or may not be true for the
general malloc().

ii. (2 pts) Disadvantage

As with all custom memory allocators, the key disadvantage is the potential for
lower utilization, for two reasons:

• Unused memory on the per-worker free list cannot be used for other
purposes, particular if, as in the implementation shown, the list is allowed
to grow unbounded.

• There is a heightened potential for fragmentation since unused blocks
kept on the per-worker free list cannot be coalesced with other free blocks.

2. Automatic Memory Management (14 pts)
The following questions relate to automatic memory management.

a) (8 pts) Sketch the live memory graph of the following Java program (the

API is the same as in exercise 4 – every call to takeLiveHeapSample()
outputs a data point with the size of the live heap.)

import java.util.*;

public class MysteryFigure
{
 static void a() throws Exception {
 int [] a = new int[5000];

CS 3214 Sample Final Exam (Fall 2014)

4/13

 HeapTracker.takeLiveHeapSample(); // take sample
 List<Object> list = new ArrayList<Object>(400);
 for (int i = 0; i < 400; i++) {
 list.add(new Object());
 HeapTracker.takeLiveHeapSample(); // take sample
 }
 }

 public static void main(String []av) throws Exception {
 HeapTracker.startTrace(); // start tracing
 for (int i = 0; i < 8; i++) {
 HeapTracker.takeLiveHeapSample(); // take sample
 a();
 }
 HeapTracker.stopTrace(); // stop tracing
 }
}

Your sketch/drawing goes here:

It should look like a saw blade. Note the deep “cuts” when the int [] array is
allocated:

CS 3214 Sample Final Exam (Fall 2014)

5/13

b) (3 pts) Why can many garbage collectors move objects in order to
compact the heap whereas explicit allocators (e.g. general malloc()) are
usually unable to do so?

Because these garbage collectors operate in execution environments for
typesafe languages in which the collector can precisely identify the locations of
pointers, and in which the program’s code cannot arbitrarily produce pointers by
casting integers. This property holds true for languages such as Java,
JavaScript, Python, and many others. Conversely, general-purpose explicit
allocators have no knowledge of where a program may store pointers returned by
calls to malloc(), so they cannot move the blocks of memory to which those
pointers refer.

c) (3 pts) In exercise 5, you implemented a simulation of a mark-and-sweep

collector. How do cycles in the reachability graph affect a mark-and-sweep
collector?

Not at all. If there is a cycle in the reachable part of the heap, the mark-and-
sweep’s per-node ‘visited’ flag will ensure that the mark algorithm terminates
even though there are cycles – as in any graph traversal algorithm. If there is a
cycle in the unreachable part of the heap, it does not affect the collector’s ability
to sweep unreachable objects – all objects contained in a cycle are still identified
as garbage. This property is unlike reference-counting based schemes which
cannot easily handle cycles in the unreachable part of the heap. Exercise 4 part1
was intended to reinforce how mark-and-sweep works.

3. Virtual Memory (20 pts)
a) (6 pts) Computer systems did not

always exploit virtual memory in the
way they do today. For instance, in
some systems, all movement of data
between main memory and
secondary storage was done by the
programmer. In fact, an
advertisement from May 1971
(depicted on the right) points out that
some large computer manufacturers
of that time (IBM) were initially
skeptical of the idea.

List 2 distinct technical challenges
that had to be overcome before
virtual memory could become a
viable technology!

CS 3214 Sample Final Exam (Fall 2014)

6/13

The main concerns centered on the overhead and its impact on
speed/performance, in particular:

• Translation overhead: a VM system requires a virtual-to-physical
translation for each instruction (so the processor can fetch it), which in turn
was solved by introducing special-purpose hardware (TLB) to cache these
translations.

• Page fault frequency: for the average access speed of the resulting
system to approach that of RAM, page fault rates must be kept very low.
This problem was solved by the introduction of the concept of a working
set and good page replacement algorithms.

b) (4 pts) For programs that must process large amounts of data in memory,
which one is faster: declaring a global char[] array of maximum size or
mmap’ing the necessary amount of anonymous memory? Justify your
answer!

From a virtual memory point of view, the two approaches are nearly
indistinguishable: when loading a program with a large global array (declared in
its bss section) the program loader will simply reserve virtual addresses for it,
exactly in the same way as mmap() will – in fact, inside the kernel, the same
functions are called. Physical memory is allocated only when the process
accesses the individual pages. The additional overhead of the mmap() system
call is insignificant when compared to the cost of the minor page faults to bring in
the pages in the area, especially if it is large as stated in the problem.

c) (4 pts) We know that the operating system deallocates all memory a
process has allocated when the process exits, thus it is not required to call
free() before exiting. Though not required, could there be benefits to doing
so? Alternatively, could there be drawbacks? Or does it not matter?

There are only drawbacks: In the best case, CPU time is wasted in adjusting
pointers and lists in pages that are shortly overwritten. In the worst case, the OS
will need to bring in swapped-out pages from disk in order to perform those
meaningless operations.

The only argument in favor might be one of software evolution, which doesn’t
justify actually calling free() before exit(), but may justify leaving free() calls in
code that might later be used repeatedly in long running programs, in which case
not calling free() would create memory leaks.

d) (6 pts) Consider the following program:

// infrec.c
static void recurse() {
 char buffer[8192];

CS 3214 Sample Final Exam (Fall 2014)

7/13

 buffer[0] = 'A';
 recurse();
}

int main() { recurse(); }

When run on boxelder (one of the machines on our rlogin cluster), the
program does not appear to finish. After 1 minute, the output of the Unix
command top shows the information below, which includes the amount of
virtual memory used (VIRT), the amount of physical memory used (RES),
the state of the process (D – sleeping on disk), and the CPU utilization of
the process:

top - 11:55:20 up 120 days, 15:23, 4 users, load average: 2.97, 1.17, 0.77
Tasks: 390 total, 1 running, 386 sleeping, 0 stopped, 3 zombie
Cpu(s): 0.0%us, 1.3%sy, 0.0%ni, 83.7%id, 15.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 49409336k total, 49219968k used, 189368k free, 2748k buffers
Swap: 14335992k total, 2760476k used, 11575516k free, 45088k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
30892 cs3214 20 0 96.6g 46g 260 D 10.0 97.7 0:24.07 infrec

i. (4 pts) Briefly explain what is going on from a virtual memory perspective!

Thrashing. At each recursive call, a new stack frame of size ~8KB is allocated
and immediately touched, causing a page fault that will cause the OS to allocate
physical memory. After 1 minute, all physical memory (48GB) was exhausted, at
which point the machine started to swap memory to disk to satisfy the program’s
implicit requests. As a result, it became I/O bound (in the D – waiting for disk
state, with very low CPU utilization). Linux’s global replacement policy allowed
the program to take up all available physical memory on the machine.

ii. (2 pts) How could this behavior have been prevented?

Put a limit on the amount of virtual addresses that can be taken up by the stack
segment, i.e., limit the size of the stack and terminate programs that attempt to
use more.

This is commonly done and is in fact the default configuration in Linux: a soft limit
of, say 8192 kB, and a hard limit set to ‘unlimited’. If a program suffers from
infinite recursion, like this one does, it will fail quickly without bringing the
machine into the state of thrashing. If there is a legitimate reason for using large
stacks (as is the case for some programs), the user can use ulimit(1)/setrlimit(2)
to explicitly increase the maximum stack size before running the program.
After inquiring, I learned that our system administrators removed the default limit
to accommodate an old & buggy version of a commercial Fortran compiler. A
better approach is to have only those users who need to run this compiler
remove the stack limit.

CS 3214 Sample Final Exam (Fall 2014)

8/13

4. Networking & Servers (14 pts)
a) (4 pts) Internet Design. A key design principle of the Internet is sometimes

referred to as “smart host, dumb network.” Explain what is meant by that,
using examples of specific design decisions!

Fundamentally, it means that the network’s primary function is to forward packets
from a source host to a destination host. Everything else is handled at the end
points, including

• transport layer protocols such as TCP that implement connection
establishment and reliable data transmission

• application code and application-level protocols
• metadata protocols such DNS, the domain name service that maps

domain names to IP addresses
There are exceptions to this in practice (e.g. middleboxes) but those are
implemented in a way that the user does not perceive their existence.

b) (4 pts) IPv4 vs. IPv6. Even though the shortage of IPv4 addresses has
been known for almost two decades, and even though IPv6 was (more or
less) finalized more than a decade ago, only a miniscule fraction of
Internet traffic today uses IPv6. Describe 2 technical reasons for why this
transition is going so slowly!

Possible technical reasons include:

- The inability of IPv4-only hosts to communicate with IPv6-only hosts due
to a lack of embedding of the IPv4 address space in the IPv6 address
space. As such, end host operators must assign a separate IPv6 address
to each of their hosts, without necessarily gaining immediate benefits in
return.

- The need to change applications to understand IPv6 addresses, as you
have experienced in the project – even 2014 textbooks do not include the
necessary information as you’ve seen. Some application protocols that
embedded IPv4 addresses needed changes as well, e.g. ftp.

- The existence and widespread deployment of NAT as a solution for the
common case in which no public IP addresses are needed.

For more details, see D.J. Bernstein (ca. 2002), “The IPv6 Mess”,
http://cr.yp.to/djbdns/ipv6mess.html

c) (6 pts) Software Engineering Considerations. Engineering single process
network server programs such as your HTTP server exhibits unique
software engineering challenges, whether they are multi-threaded or
written using a single-threaded, event-based model. Describe 2
challenges unique to this particular model of server!

http://cr.yp.to/djbdns/ipv6mess.html

CS 3214 Sample Final Exam (Fall 2014)

9/13

The key challenges are likely:

• Error recovery: if an error occurs, it must be handled without exiting the
process. In a multi-threaded design, if an error causes a thread to exit, it
must do so in a way that leaves critical global data structures in a
consistent state.

• Resource reclamation: any resource leak (file descriptors, database
connections, etc.) caused by a single connection has the potential to affect
the entire server.

These challenges apply to any single-process design, be it multi-threaded or
event-based. By contrast, multi-process design often have the option to exit() to
recover from error situations, in which case the OS (often) ensures that no
resources are leaked.

5. HTTP (20 pts)
a) (5 pts) CGI (Common Gateway Interface) is a way by which a HTTP

server can delegate the generation of dynamic content to an external
program. The tiny.c sample program, which many of you used as a
starting point for implementing project 4, contains the following function
that implements it:

 void serve_dynamic(int fd, char *filename, char *cgiargs)
{
 char buf[MAXLINE], *emptylist[] = { NULL };

 /* Return first part of HTTP response */
 sprintf(buf, "HTTP/1.1 200 OK\r\n"); // modified from HTTP/1.0
 Rio_writen(fd, buf, strlen(buf));
 sprintf(buf, "Server: Tiny Web Server\r\n");
 Rio_writen(fd, buf, strlen(buf));

 if (Fork() == 0) { /* child */
 /* Real server would set all CGI vars here */
 setenv("QUERY_STRING", cgiargs, 1);
 Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */
 Execve(filename, emptylist, environ); /* Run CGI program */
 }
 Wait(NULL); /* Parent waits for and reaps child */
}

Based on that code, sketch a CGI program in a language of your choice
that responds to a request! The dynamic content it generates does not
matter, but make sure that the HTTP/1.1 protocol is implemented
correctly!

CS 3214 Sample Final Exam (Fall 2014)

10/13

The CGI program inherits the open client connection as its stdout. The server
has already written the 200 response and the Server: header. The CGI program
must add a Content-Length header and add any remaining headers it wishes,
then must output a CRLF and the body of the response, e.g..

#!/usr/bin/python

from sys import stdout as out
body = “Hello, World\n”
out.write(“Content-Type: text/plain\r\nContent-Length: %d\r\n\r\n%s” %
(len(body), body))

Note that the question asked to sketch how CGI would work “based on the given
code” – in real-life CGI (RFC 3875), there are variations: by default, the process
forked will add headers, but no content-length header – instead, the parent will
count how many bytes are in the body and add a Content-Length header field.
An exception to this are NPH (non-parsed header script), in which case the CGI
script takes full responsibility for the response processing. In HTTP/1.0, the script
could simply exit and this would close the connection.
Some of you wrote just a function, but the problem clearly asked for a program, and it’s clear from
context (fork() + execve()) that a program is needed.

b) (5 pts) In TCP/IP, addressing is done by a combination of a globally
unique IPv4/v6 address and a port number. Domain names such as
www.reddit.com cannot be used directly; rather, programs first need to
look up the corresponding IP address before calling connect(), e.g.
198.41.208.143. However, when one attempts to enter the IP address
directly, the following ominous screen appears:

CS 3214 Sample Final Exam (Fall 2014)

11/13

How does the destination server (here: www.reddit.com) know whether
you typed in the hostname or the IP address in the browser, and why does
it care?

i. (2 pts) It knows it …

Because it is sent along in the Host: header of the HTTP request.

ii. (3 pts) It cares because …

The same IP address could (and probably is) used to host multiple websites with
different domain names. CloudFlare likely does not have enough IP addresses to
have a separate set for each of their many customers.

c) (5 pts) Some community
websites implement a feature
that lets users see which
other users are currently
viewing the site, i.e., are
“online.”

Based on your knowledge of the HTTP protocol and its connection
management, how would you implement such a feature?

HTTP does not have a way for a server to contact a client and check its
presence; there is also no protocol element that would announce to a server
when the user has closed a web page or the browser has exited or crashed.
Consequently, such features must be implemented using JavaScript code that
periodically polls the server by requesting some agreed-upon URL. The server
must take the absence of such client-initiated pings as a sign the user has left the
page.

Side note: the DOM window also fires an ‘unload’ event when a page is torn
down; an attached JavaScript event handler can send a message to the server
right before the user navigates away from a page, but this event will not fire if the
user disconnects because of a network disconnect or browser crash.

d) (5 pts) SPDY (pronounced (SPeeDY) is a protocol proposed by Google to

replace HTTP/1.1. Two of its core features are (a) multiplexed streams
that reuse a single TCP connection and (b) the ability of a server to
respond to requests in any order. Describe the motivation for adding these
features, particularly when compared to HTTP/1.1’s persistent
connections!

The use of a single connection is beneficial as it reduces connection overhead,
which in particular reduces the amount of resources a server has to allocate for

CS 3214 Sample Final Exam (Fall 2014)

12/13

each client – something very important to large scale providers such as Google.
HTTP/1.1 already allows the pipelining of multiple requests and the retrieval of
multiple objects over the same connection, but single connections are not used in
practice since clients risk “head-of-line” blocking where requests a server could
answer more quickly have to wait behind requests that take longer. HTTP/1.1
cannot allow those requests to “jump the line,” but the out-of-order response
feature in SPDY can, thus making it risk-free for clients to pipeline requests on
the same connection.

6. Essay Question: You Be The Judge! (18 pts)

Some students were surprised to learn that they did not meet the basic
requirements in the fork/join thread pool project when their code failed during
grading, even though (they say) it did not fail during testing. Other students saw
their code sometimes fail during testing, but were relieved to learn that it did not
fail during grading.

Suppose you are hired as a UTA for next semester’s offering of CS 3214. You
are being asked to design and defend a sensible strategy for grading this project.
Based on your knowledge of current computer architectures, multi-threaded
programming techniques, as well as the capabilities and limitations of emerging
or established tools, develop, describe, and defend a possible strategy!

Note: This question will be graded both for content/correctness of your technical
arguments (12 pts) and for your ability to communicate effectively in writing (6
pts). Your answer should be well-written, organized, and clear.

A complete answer should discuss the nature of and reasons for intermittent
failures in multi-threaded programs, which include latent bugs that manifest itself
when certain environmental conditions are present.
Existing tools (e.g. race condition checkers) can be effective, but they suffer from
false negatives and (in some cases) false positives. False negatives can occur if
a bug is not triggered for a given input or the race condition is hidden by spurious
happens-before relationships; false positives may occur due to limitations in the
race-detection algorithm used or because advanced synchronization constructs
are used. Students may also apply techniques to placate the tool, but which
introduce atomicity violations. Finally, the tool itself may have bugs.
There are emerging tools for formal verification that can prove certain aspects of
a program’s correctness, but they are not ready for classroom use.
Repeated stress testing is an alternative; while it also suffers from false
negatives, it does – by definition – not have false positives (i.e., correct programs
that fail the provided tests).
Several other ideas are worth considering, including intentional variations in the
environmental conditions under which a program runs (number of cores, core

CS 3214 Sample Final Exam (Fall 2014)

13/13

assignment, background CPU load), or the use of deterministic multi-threading
that would allow a replay of conditions under which a program failed.
A suitable strategy should take these facts into account and provide concrete
suggestions for how to include them in a grading strategy.

Arguments that are less technically sound include attempts at ensuring a pristine
and consistent environment; although this helps with reducing the variance
observed in performance benchmarking, it tends to mask intermittent
concurrency-related issues. Another idea was to average correctness scores and
awarding partial credit if problems fail only so many times. Such a strategy is in
my opinion not appropriate for crucial infrastructure such as a thread pool, for
which basic tests should never fail.

	1. Explicit Memory Management (14 pts)
	2. Automatic Memory Management (14 pts)
	3. Virtual Memory (20 pts)
	4. Networking & Servers (14 pts)
	5. HTTP (20 pts)
	6. Essay Question: You Be The Judge! (18 pts)

