
CS 3214 Summer 2020 Final Exam Solution

August 16, 2020

Contents

1 Automatic Memory Management (18 pts) 3
1.1 Object Reachability Graphs (12 pts) . 3
1.2 Churn (6 pts) . 4

2 Dynamic Memory Management (18 pts) 5
2.1 Best-Case Performance (Custom Allocators) (9 pts) 5
2.2 Worst-Case Performance (9 pts) . 6

3 Virtual Memory (26 pts) 7
3.1 Files and Memory (10 pts) . 7
3.2 On-demand Paging (6 pts) . 8
3.3 VM Policies (10 pts) . 10

4 Networking (38 pts) 10
4.1 Know Your Internet (28 pts) . 10
4.2 Mixing Threads and Sockets (10 pts) . 12

1

Rules

• This exam is open book, open notes, and open Internet, but in a read-only way.

• You are not allowed to post or otherwise communicate with anyone else about these
problems.

• You are required to cite any sources you use, except for lecture material, source code
provided as part of the class materials, and the textbook.

• If you have a question about the exam, you may post it as a private question on
Piazza. If it is of interest to others, I will make it public.

• Any errata to this exam will be published prior to 12h before the deadline.

Submission Requirements

Submit a tar file that contains the following files:

• ObjectReachability.java to answer Question 1.1. Add the statement asked for in
part (b) to the main() function.

• churn.txt to answer Question 1.2. This will contain source code in your chosen
language, but for uniformity, please give it this name.

• dynmemory.txt to answer Questions 2.1 and 2.2.

• pagefault.c to answer Question 3.2.

• vm.txt to answer Questions 3.1 and 3.3.

• internet.txt with answers to Question 4.1.

• networking.txt with answers to Question 4.2.

2

1 Automatic Memory Management (18 pts)

1.1 Object Reachability Graphs (12 pts)

(a) In systems using automatic memory management, it is important to understand how
the object reachability graph changes as a result of a program’s action. Figure 1 shows a
snapshot of a reachability graph produced by the execution of a small Java program.

Reconstruct this program, and denote with a comment the point in time at which the
reachability graph has the structure displayed in Figure 1.

Figure 1: A snapshot of an object reachability graph produced by a Java program. On
the left, roots that are part of stack frames are shown, in this case, a single static method
main with a local variable called C of type Cycle, which contains a single field called next.

(b) Which Java statement, if added to the main() function, would turn all of the objects
shown in the figure into “garbage?”

Solution

1 public class ObjectReachability {

2 static class Cycle {

3 Cycle next;

4 Cycle(Cycle next) {

5 this.next = next;

6 }

7 Cycle() {

8 this(null);

3

9 }

10 }

11

12 public static void main(String[] args) {

13 Cycle C = new Cycle();

14 C = new Cycle(C);

15 C = new Cycle(C);

16 C.next.next.next = C;

17

18 // disconnect Cycle from main stack frame (part b)

19 C = null;

20 }

21 }

1.2 Churn (6 pts)

An old CS3214 exam contained the following depiction of Churn, Bloat, and Leaks:

Write a small program (or function) in a garbage-collected language of your choice
that fits the above definition of churn.

Solution Any program that allocates temporary objects that are not anchored to any
roots will do, even as simple as

4

https://courses.cs.vt.edu/~cs3214/spring2020/documents/SampleFinalCS3214S18.pdf

for (int i = 0; i < 100000; i++)

new Integer(42);

2 Dynamic Memory Management (18 pts)

In project 3, you implemented a dynamic memory allocator. The performance index of your
implementation reflected a weighted average of peak memory utilization and throughput.
Peak memory utilization was defined as the ratio of aggregate payload size requested by the
client and the amount of memory your allocator obtained from the underlying system when
the aggregate payload size reached its peak. The next 2 questions assume this performance
metric.

2.1 Best-Case Performance (Custom Allocators) (9 pts)

Although general purpose allocators must be designed to provide good performance for a
range of workloads, for the purposes of our project, you had complete knowledge of the
workload (traces) on which it would be benchmarked.

Suppose you had been asked to write an allocator that optimizes the performance index
for the workload shown in the following code (and for only this workload):

1 #define LARGE 10000

2 int *p1[LARGE];

3 int *p2[LARGE];

4

5 void

6 workload()

7 {

8 for (int i = 0; i < LARGE; i++) {

9 p1[i] = malloc(240);

10 p2[i] = malloc(160);

11 }

12 for (int i = 0; i < LARGE; i++)

13 free(p2[i]);

14 int * p3 = malloc(LARGE * 161);

15 for (int i = 0; i < LARGE; i++)

16 free(p1[i]);

17 free(p3);

18 }

Describe what policies this allocator would use to maximize its performance score!

5

Solution. This workload contains only 3 different allocation sizes, and whatever strategy
is chosen depends on only the asked-for size. Therefore, allocation can easily be imple-
mented in constant time O(1), maximizing the throughput component of the performance
index. (For instance, segregated fits with exact-size or range-size policies support this.)

To maximize the utilization component, consider that the aggregate payload reaches
its peak with the malloc statement on line 14. It is possible to design a strategy that asks
for no more than approx. (161 + 240)×LARGE bytes from the system (ignoring overhead
due to headers or alignment, but without any memory lost to internal fragmentation). For
instance, blocks of memory could be placed out such that the 240 blocks are allocated
before the 160 blocks like so: 240, 240, 240, . . . , 160, 160, 160. Then coalescing the freed
blocks on line 13 can create a large block big enough to hold the allocation on line 14.

Note: though this question mainly asked for your understanding of the performance
index, the example given is a bit contrived in that custom allocators generally do not have
knowledge that is this precise about a workload. Usually, only common object sizes are
known and the allocator optimizes for those.

Your answer needs to address both how to optimize throughput and utilization. Note
that moving blocks in memory is not allowed for any malloc-style allocator used in C.

2.2 Worst-Case Performance (9 pts)

Now suppose an adversary knows your p3 allocator’s policies in detail.
Design a workload that would hurt your allocator’s performance index the most. It is

not necessary to provide a formal proof, a description of how the workload works (using a
suitable notation, possibly C code) will suffice.

If you haven’t completed project 3, discuss what policies you would have chosen had
you completed it, otherwise be sure to describe any applicable policies you used in your
implementation.

Solution The goal of an adverse policy must be to lower throughput or utilization or
both. The answer depends on what you implemented in your project. If you implemented
segregated fits with a policy that looks into the next largest size class, decreasing through-
put would require an attack at the largest size class, creating a large list of uncoalesced
free blocks (you need to describe how to accomplish this, for instance by allocating, then
freeing every other block.) If you had an explicit free list, this attack would work right
away.

To diminish utilization, you could target internal or external fragmentation, or both.
Targeting internal fragmentation would require allocation sizes that do not cause splitting,
that is, that leave unused bytes in each allocated block.

The main weakness of all allocators, however, is that they are subject to external frag-
mentation since they are unable to move blocks. For any policy, it’s possible to construct
a workload that leaves free, but uncoalesced blocks. Simply free every other block then

6

allocate blocks larger than the largest such freed block. Knowing your allocator’s policies,
the blocks to be freed can be identified by simply running or simulating these policies since
your allocator has to make a placement decision when malloc() is called.

3 Virtual Memory (26 pts)

3.1 Files and Memory (10 pts)

Consider the following Unix program which unfortunately lacks documentation.

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/mman.h>

int

main(int ac, char *av[])

{

if (ac != 2) {

fprintf(stderr, "Usage: %s [fname]\n", av[0]);

return EXIT_FAILURE;

}

int fd = open(av[1], O_RDONLY);

if (fd == -1) {

perror("open");

return EXIT_FAILURE;

}

char *p = mmap(NULL, getpagesize(), PROT_READ, MAP_PRIVATE, fd, 0);

if (p == NULL) {

perror("mmap");

return EXIT_FAILURE;

}

if (strncmp(p, "#!", 2) == 0) {

char *c;

int rc = sscanf(p + 2, "%ms\n", &c);

if (rc == 1) {

7

fprintf(stderr, "%s\n", c);

return EXIT_SUCCESS;

}

}

return EXIT_FAILURE;

}

Write a brief, man-page like description of what this program does. Be sure to include
usage, a synopsis of the intended function, and a description of both the output and the
exit status conventions of this utility.

Solution

USAGE:

./shebang file - report if executable is a script and output its interpreter

DESCRIPTION:

This program examines if a file contains a “hashbang” signature. If so, it extracts the
name of the interpreter program that would be invoked to execute the script contained in
the file. If the signature was found, the program outputs the name of said interpreter to
its standard error stream and exits with zero, else with a non-zero exit status.

NOTES:

The program is implemented using the mmap(2) system call to map the file’s content
into its memory space.

3.2 On-demand Paging (6 pts)

Like most modern OS, Linux uses fully on-demand paged virtual memory. The following
shell script uses the time(1) command to display the number of page faults that occur
during the execution of a process:

#!/bin/bash

#

Run a command and report the number of minor page faults

#

/usr/bin/time -f "%R minor pagefaults" $*

Testing it on an empty C program (which includes only the starter code that calls
main()):

8

// empty C program for baseline

int main() { }

yields an output of about 50–55 pagefaults on a contemporary Linux x86 64 machine
with a 4KB page size.

Write a single-threaded C program that, when run, reports about 1050 minor page
faults and meets the following conditions:

• It does not use variables of global extent (this includes global variables, global static
variables, and local static variables)

• It does not use any dynamic memory (malloc(), sbrk(), mmap() or any system call
that allocates virtual memory addresses from the OS)

• It does not use automatic local variables with a size of more than 4KB as reported
by the sizeof() operator

• It does not use GCC’s variable length arrays

In other words, the program must consume mainly memory via its stack.

Solution Any program that ensures that the stack grows and all pages on the stack are
touched will work, except for the condition that no local variable be larger than 4KB. This
requires either 1, 000 separate variables, or the use of recursion.

#include <stdlib.h>

void recurse(int n)

{

volatile char buf[4096] = { 0 }; // prevent compiler from optimizing this away

buf[0]++; // cause a memory access

if (n > 0)

recurse(n-1);

}

// invoke as

// recurse 1000

int

main(int ac, char *av[])

{

recurse(atoi(av[1]));

}

9

https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html

Note that the statement buf[0]++ may not be necessary if the compiler inserts instruc-
tions to save/restore caller-saved registers on the stack, which also cause memory accesses
that are roughly spaced 1 page apart. It is inserted here to prevent the compiler from
removing the buf array altogether when compiled with optimizations.

3.3 VM Policies (10 pts)

“Virtual memory” is a set of techniques, that combines mechanisms such as address trans-
lation, MMU-based access control, page replacement, prefetching, etc. with tuned policies
to achieve virtualization and protection. It was originally developed in the 1960’s when
main memory sizes were only a fraction of today’s sizes. For instance, the departmental
rlogin cluster installed in May 2020 contains 32 nodes with 384 GB of RAM each.

Select 2 different techniques underlying virtual memory and discuss specifically whether
and/or how they apply to such machines with relatively large main memories. If applicable,
discuss how policies used by the VM subsystem should/could be adapted for larger memory
sizes. Briefly justify your arguments.

Limit: no more than one paragraph for each technique/argument.

No solution provided. We were looking for 2 independent arguments supported by
(correct) facts, each focusing on a technique that is part of virtual memory. Merely citing
the definition of a technique is not enough – you needed to specifically address how the
importance of this technique changes (or why it does not change) with the trend to larger
physical main memories. Generally aspects that relate to protection are unaffected by the
main memory size. Aspects that relate to virtual address space (such as page table size in
hierarchical schemes), are also not affected. Resource-related policies (such as on-demand
paging or page replacement) are affected. You could argue that they’re less needed, or you
could argue that keeping them might allow even larger workloads.

4 Networking (38 pts)

4.1 Know Your Internet (28 pts)

Find out if the following statements related to networking are true or false. If true, just
add true. If false, write false and correct the statement.

1. Link transmission delay grows with increasing bandwidth.

False. Link transmission delay shrinks with increasing bandwidth.

2. Access networks typically provide symmetric upstream and downstream bandwidth
for all subscribers.

False. Most access networks (e.g., HFC or satellite) provide more downstream than
upstream bandwidth.

10

3. Internet routers are required to keep track of all TCP connections whose traffic passes
through them.

False. Internet routers need not be aware of transport layer connections (though
some are for traffic engineering and QoS purposes).

4. Internet routers exchange information about where packets destined for certain net-
works can be forwarded.

True. (They exchange this information in routing protocols such as RIP, OSPF, or
BGP)

5. TCP clients are encouraged to prefer IPv6 addresses to IPv4 addresses if a server
possesses both.

True. (This is how the planned transition to IPv6 might eventually take place.)

6. A file descriptor associated with a TCP socket will be automatically closed when the
remote side closes the TCP connection.

False. The programmer is responsible for closing the file descriptor even after this
other side has closed the TCP connection or a leak will result.

7. A TCP connection will be automatically shut down when all processes that maintain
file descriptors referring to the associated socket have terminated.

True. (All file descriptors are closed on process exit and any associated resources
are deallocated, including side effects such as closing a TCP connection.)

8. The 16-bit TCP port space limits a server running on a single Internet end host to
an simultaneous total of no more than 65, 536 ongoing TCP connections.

False. TCP demultiplexing uses a quadruple of (src addr, src port, dst addr, dst
port), hence a server using a single port could maintain up to 232+16 connections in
theory.

9. TCP sockets can be used only when communicating across machines; for local con-
nections, the programmers must use Unix pipes.

False. TCP sockets can also be used for IPC on a machine, e.g. via 127.0.0.1

10. If a process writes data faster into a TCP connection than the remote peer is able
to receive, the process is placed in the BLOCKED state until the remote peer has
signaled that it is ok to continue sending data.

True. (This TCP feature is called flow control.)

11. The HTTP protocol could be made more efficient by using numeric codes instead of
header names such as Content-Type.

True. (In fact, HTTP/2.0 Header Compression (HPACK, RFC 7541) does this.)

11

12. An HTTP user agent such as browser decides whether to include a cookie in an
outgoing HTTP request primarily based on the targeted URL.

True. (Cookies are maintained separately on a per-domain + path basis.)

13. If JWT tokens are leaked, they can be used by anyone to impersonate a user until
they expire.

True. (A server will accept a valid token no matter who its bearer is.)

14. A user in possession of a server’s secret key is able to extend the “expires at” claim
in a JWT token they have previously obtained from that server.

True. (Yes, possession of the secret key allows anyone to manufacture valid tokens.)

4.2 Mixing Threads and Sockets (10 pts)

Consider the following program, which its programmer unfortunately failed to document:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <errno.h>

5 #include <unistd.h>

6 #include <sys/socket.h>

7 #include <netdb.h>

8 #include <pthread.h>

9

10 static int

11 dial(char *host, char *port)

12 {

13 struct addrinfo hint = {

14 .ai_flags = AI_CANONNAME | AI_NUMERICSERV | AI_ADDRCONFIG,

15 .ai_protocol = IPPROTO_TCP

16 };

17

18 struct addrinfo *info;

19 int rc = getaddrinfo(host, port, &hint, &info);

20 if (rc != 0)

21 gai_strerror(rc), exit(EXIT_FAILURE);

22

23 while (info) {

24 int s = socket(info->ai_family,

25 info->ai_socktype,

12

26 info->ai_protocol);

27 if (s < 0)

28 perror("socket"), exit(EXIT_FAILURE);

29

30 if (connect(s, info->ai_addr, info->ai_addrlen) == 0)

31 return s;

32 close(s);

33 }

34 exit(EXIT_FAILURE);

35 }

36

37 struct fdpair {

38 int from, to;

39 };

40

41 static void *

42 shovel(void *_data)

43 {

44 struct fdpair * c = _data;

45 char buf[2048];

46 int bread;

47 while ((bread = read(c->from, buf, sizeof buf)) > 0)

48 write(c->to, buf, bread);

49 return NULL;

50 }

51

52 int

53 main(int ac, char *av[])

54 {

55 int s = dial(av[1], av[2]);

56 struct fdpair p1 = { .from = s, .to = STDOUT_FILENO };

57 struct fdpair p2 = { .from = STDIN_FILENO, .to = s };

58 pthread_t t[2];

59 pthread_create(t, NULL, shovel, &p1);

60 pthread_create(t, NULL, shovel, &p2);

61 for (int i = 0; i < 2; i++)

62 pthread_join(t[i], NULL);

63 }

Write a brief, man-page like description of what this program does. Be sure to include
usage and a synopsis of its intended function. Denote any limitations you may spot as well.

13

Solution

USAGE:

./nc host port - connect standard in/out stream to a remote network server

DESCRIPTION:http://get.webgl.org/

This program accepts two arguments, hostname and port number, representing the
DNS name or IP address of an Internet host, and a numeric port number. It will attempt
to resolve the DNS name based on the host configuration and connectivity to find a IPv6
and/or IPv4 address, and then attempts to connect to these address in order. Once a
connection is obtained, the program copies data from its standard input stream to the
connection, and data received from the TCP connection to its standard output stream,
using 2 threads.

The program terminates with exit status 0 when both connections are closed or en-
counter an error condition. If the program can’t connect, it exits with a non-zero exit
status.

BUGS:

A shortcoming of this implementation is that the program needs to be terminated by
the user, for instance with SIGINT if the network connection is not closed by the other
side or the user doesn’t type Ctrl-D to end the program’s standard input stream (unless
redirected).

Because of this shortcoming, an actual bug went unnoticed in the second call to
pthread create which overwrote the pthread t id returned from the first call. The correct
version is shown below.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <errno.h>

5 #include <unistd.h>

6 #include <sys/socket.h>

7 #include <netdb.h>

8 #include <pthread.h>

9

10 static int

11 dial(char *host, char *port)

12 {

13 struct addrinfo hint = {

14

14 .ai_flags = AI_CANONNAME | AI_NUMERICSERV | AI_ADDRCONFIG,

15 .ai_protocol = IPPROTO_TCP

16 };

17

18 struct addrinfo *info;

19 int rc = getaddrinfo(host, port, &hint, &info);

20 if (rc != 0)

21 gai_strerror(rc), exit(EXIT_FAILURE);

22

23 while (info) {

24 int s = socket(info->ai_family,

25 info->ai_socktype,

26 info->ai_protocol);

27 if (s < 0)

28 perror("socket"), exit(EXIT_FAILURE);

29

30 if (connect(s, info->ai_addr, info->ai_addrlen) == 0)

31 return s;

32 close(s);

33 }

34 exit(EXIT_FAILURE);

35 }

36

37 struct fdpair {

38 int from, to;

39 };

40

41 static void *

42 shovel(void *_data)

43 {

44 struct fdpair * c = _data;

45 char buf[2048];

46 int bread;

47 while ((bread = read(c->from, buf, sizeof buf)) > 0)

48 write(c->to, buf, bread);

49 return NULL;

50 }

51

52 int

53 main(int ac, char *av[])

54 {

15

55 int s = dial(av[1], av[2]);

56 struct fdpair p1 = { .from = s, .to = STDOUT_FILENO };

57 struct fdpair p2 = { .from = STDIN_FILENO, .to = s };

58 pthread_t t[2];

59 pthread_create(t, NULL, shovel, &p1);

60 pthread_create(t+1, NULL, shovel, &p2);

61 for (int i = 0; i < 2; i++)

62 pthread_join(t[i], NULL);

63 }

The functionality is mini-version of the popular netcat (nc) program, e.g. here is an
example session talking to google.com:

$./mysterynetworktool www.google.com 80

HEAD / HTTP/1.0

Host: www.google.com

HTTP/1.0 200 OK

Content-Type: text/html; charset=ISO-8859-1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

Date: Sat, 15 Aug 2020 02:26:36 GMT

Server: gws

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

Expires: Sat, 15 Aug 2020 02:26:36 GMT

Cache-Control: private

Set-Cookie: 1P_JAR=2020-08-15-02; expires= ...

Set-Cookie: NID=204=hUqKXxfb5yqpqp0 ...

domain=.google.com; HttpOnly

16

	Automatic Memory Management (18 pts)
	Object Reachability Graphs (12 pts)
	Churn (6 pts)

	Dynamic Memory Management (18 pts)
	Best-Case Performance (Custom Allocators) (9 pts)
	Worst-Case Performance (9 pts)

	Virtual Memory (26 pts)
	Files and Memory (10 pts)
	On-demand Paging (6 pts)
	VM Policies (10 pts)

	Networking (38 pts)
	Know Your Internet (28 pts)
	Mixing Threads and Sockets (10 pts)

