
CS3214 Fall 2021 Exercise 0

Due Date: see website

In this class, you are required to have familiarity with Unix commands and Unix pro-
gramming environments. The first part of this exercise is related to making sure you are
comfortable in our Unix environment; the remaining parts ask for familiarity with how
to invoke programs in a Unix environment and how to make use of the standard input
and output streams, as well as understanding the difference between byte and character
streams.

1 Using Linux

It is crucial that everybody become productive using a Unix command line, even if the
computer you are using daily is a Windows or OSX machine. Working on the command
line requires working knowledge of a shell such as bash or zsh, but it also requires an
understanding of how the shell interacts with system commands and programs from the
user’s perspective.

Please do the following, then answer the questions below.

• Make sure your personal machine has an ssh client installed. Set your machine up
for public key authentication when logging on to rlogin.cs.vt.edu. Use ssh-keygen
to create a key.

There is also an web interface provided by the department that allows you to create
a key pair at https://admin.cs.vt.edu/keys.pl. However, in this case, you
do not maintain continuous possession of the private key from its inception.

At the end of this step, you should be able to ssh into rlogin without having to type
a password.

• Make sure you know how to use the command line editing facilities of your shell.
For bash users, which most of you are by default, examine the effect of the following
keys when editing: d̂, TAB, â, ê, r̂, k̂, and ŵ.

Examine the effect of the following keys when you invoke a program: ĉ, ŝ, q̂ (̂x
stands for Ctrl-x.)

• Customize your shell and create a custom prompt and any aliases you may need.
A custom prompt typically includes the name of the machine you’re on and at
least part of the pathname of the shell’s current directory as when setting PS1 to
[\u@\h \W]\$

• Make sure you know how to use at least one command line editor, such as vim,
nano, pico, or emacs.

• Many students set up a remote environment that allows them to use an IDE on
their computer. Notably, Microsoft’s Visual Studio Code provides an extension that
presents a remote environment within the IDE that is well integrated. Although

1

https://admin.cs.vt.edu/keys.pl

CS3214 Fall 2021 Exercise 0

not mandatory, we highly recommend that you do this as well. The TAs will post
instructions on how to do that.

Answer the following questions:

1. What is the name of the file containing your private key and on which computer is
it stored?

2. What is the name of the file containing your public key and on which computer is it
stored? Provide the full path name.

3. What is the output of running echo ~cs3214/bin on an rlogin cluster machine?

4. Make sure that ~cs3214/bin is part of your PATH variable when you log on. To
test it, log off and log on again, then type echo $PATH. Copy and paste the output
you get here.

5. How many machines are part of the rlogin cluster (Hint: visit http://rlogin.cs.vt.edu/)
this semester? Include only those whose names are derived from trees, e.g. “birch.”

6. Make sure your bash prompt includes your username, the name of the current ma-
chine, and a suffix of the current directory. Copy the value of your $PS1 variable
here.

7. Some filenames in your home directory start with a dot. How can you list those files
or directories?

8. Why do many people define an alias for rm using alias rm=’rm -i’?

9. The diff Unix command compares two files line by line. It is typically used to create
“patch files” which capture a change made to one of more related files. When using
diff to create a patch that describes such a change, in which order are the files to be
compared usually specified?

10. Which Unix group or group(s) are you currently a member of on our cluster?

11. What Unix permissions does a file or directory need to have to make sure that no
one besides yourself can access it?

2 Understanding Command Line Arguments and Standard
I/O in Unix

In the past, we observed that some students coming into CS 3214 did not understand
how programs access their command line arguments and how they make use of the stan-
dard input/output facilities, which present one of the basic abstractions provided by an
operating system.

2

CS3214 Fall 2021 Exercise 0

Application Side Note. Deep knowledge of Unix is an absolute prerequisite for
anyone wanting to learn or work with containers. As an example, consider this ex-
cerpt [link] from a script used to set up the container in which this semester’s Dis-
course server runs:
run_image=‘cat $config_file | $docker_path run $user_args \

--rm -i -a stdin -a stdout $image ruby -e \
"require ’yaml’; puts YAML.load(STDIN.readlines.join)[’run_image’]"‘

This command sets a variable run_image to the standard output that results from
running the pipeline that is enclosed in backquotes. This pipeline consists of 2 com-
mands: the command cat, which is given 1 argument (taken from the value of
$config_file) and whose standard output is “piped” into the command given
by the $docker_path variable (probably docker), which is invoked with 12 argu-
ments, the last one being a Ruby program that will be run inside the container, but
which can access as its standard input (STDIN) the data written to cat’s standard
output. Being able to understand what commands like this one do is a motivation
for this exercise (and hopefully, the following exercise and project will provide an
even deeper understanding).

To practice this knowledge, write a C program that concatenates a combination of given
files and/or its standard input stream to its standard output stream. The exact specifica-
tion is as follows.

Your program should be simply called concatenate.c.

When invoked without arguments, it should copy the content of its standard input stream
to its standard output stream. “Standard input” and “standard output” are standard
streams that are set up by a control program that starts your program (often, the control
program is a shell).

When invoked with arguments, it should process the arguments in order. Each argument
should be treated as the name of a file. These files should be opened and their content
should be written to the standard output stream, in the order in which they are listed on
the command line. If the name given is - (a single hyphen), the program should read and
output the content of its standard input stream instead.

If any of the files whose names are given on the command line do not exist, the program’s
behavior is undefined.

Your C program may make use of C’s stdio library (e.g., the family of functions including
fgetc, etc.), or it may use system calls such as read() or write() directly. You should
buffer the data, but you may not assume that it is possible to buffer the entire file content
in memory.

Implementation Requirement: to make sure you understand the uniformity provided
by the POSIX C API, we require that your program use the same function to copy the
data contained in files and for the data it reads from its standard input stream. Your

3

https://github.com/discourse/discourse_docker/blob/master/launcher#L506-L507
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams

CS3214 Fall 2021 Exercise 0

program’s main() function will then call this single function multiple times, as needed.
In other words, do not make use of facilities such as getchar() that implicitly refer to
the standard input stream.

You may use the script test-concat.sh to test your code.

3 Understanding how to access the Standard Input and Out-
put Streams in your Preferred Language

Standard input and output are concepts that are not specific to the use of C. Choose a
language of your choice that is not C (e.g. C++, Go, Ruby, Java, Python 2, Python 3,
JavaScript, etc. etc.) and implement the above concatenate program in your language.1

If your language cannot be compiled into an executable, and also cannot be executed
directly by an interpreter using the Shebang/Hash-bang convention, you need to create
a wrapper script for testing it. This wrapper script may be required for Java, it should
invoke your program, passing any command line arguments to it.

You may use test-concat.sh to test, by passing the name of your script or executable
as an argument.

Hint: most higher-level language allow compact implementations of these tasks. For
instance, my Python 2 implementation is 13 lines long.

Implementation Requirement: the implementation requirement is the same. Do not
special case standard input/output, use a single function.

Efficiency. You should use buffered forms of input and output in order to reduce the
number of system calls your program makes. For instance, in C, the stdio library provides
such buffering by default if you use fgetc() or fread(), whereas if you use the lower-
level read() call directly you will need to make sure that you do buffering yourselves
(in other words, read multiple bytes at once rather than a single byte in each call). The
autograder may run your program under a suitable timeout.

Use of Byte Streams. For both parts 3 and 2, your program must not attempt to interpret
the content of the streams it reads and writes in any way. In other words, it should output
the bytes (octets) that appear in the input as they appear, without making assumptions or
processing them in any way. This includes the possible occurrence of the byte value 0x00,
which may occur any number of times in the input and must be copied into the output.

1If you choose C++ or Rust, you must use C++’s or Rust’s standard library, not C’s.

4

https://en.wikipedia.org/wiki/Shebang_(Unix)

CS3214 Fall 2021 Exercise 0

Similarly, the byte value 0x0A (aka LF, or LINEFEED character) may occur any number
of times. Your program should not assign special significance to either of them, so do not
assume (a) that data read can be represented as zero-terminated C-style strings, and (b)
do not assume that the input can be broken into lines efficiently. (The worst case input
would be a sequence consisting of only LF characters.)

Many programs process characters, which has contributed to the fact that the I/O li-
braries of some higher-level languages default to the assumption that programmers will
want to input and/or output character streams in some valid encoding when accessing
file streams. The most commonly used character set today is the Unicode character set,
and the encoding that is most commonly used is UTF-8. For instance, the unicode char-
acter U+263A is encoded as a 3-byte sequence 0xE2 0x98 0xBA in UTF-8. While any
sequence of Unicode characters can be encoded into a sequence of bytes, the opposite is
not true: not every sequence of bytes represents a valid encoding of some characters. 2

For the first 2 implementations, do not assume that the input represents characters in any
valid encoding. Specifically, the input data may not represent a valid UTF-8 encoding,
and therefore, attempts to interpret it as UTF-8 data and decode it will fail for some tests,
resulting in exceptions and/or data corruption.

4 Understanding Character-Based I/O

In this part of the exercise, you will implement a simple utility that interprets its standard
input stream as a stream of UTF-8 encoded Unicode characters which it then counts. If the
standard input contains a valid encoding of Unicode characters, the utility should output
the number of such characters; else it should report an error and abort3. This is similar to
the Unix tool ‘wc -m‘ which counts the number of Unicode characters in the input stream,
except that ‘wc -m‘ ignores if the input stream is not in a valid encoding.

Write a program unicodecount.c using only functions that are part of the C standard
library. You may use the fgetwc (easiest) or the mbrtowc functions, or identify the
length of each encoded Unicode character manually. Your program must use buffering
as well. Remember to use the setlocale(3) function to set the character type locale
(LC_CTYPE) to "en_US.utf8".

If the standard input stream does not consist of correctly encoded Unicode characters in
the UTF-8 transfer encoding, output:

Invalid or incomplete multibyte or wide character

2For those wanting to learn more about the rationale behind UTF-8, I recommend The history of UTF-8
as told by Rob Pike which describes how Ken Thompson invented UTF-8 in one evening and how they
together built the first system-wide implementation in less than a week.

3aborting is accomplished via the abort() function, which sends the SIGABRT signal to the process,
which then typically leads to its termination

5

http://doc.cat-v.org/bell_labs/utf-8_history
http://doc.cat-v.org/bell_labs/utf-8_history

CS3214 Fall 2021 Exercise 0

else output the number of Unicode code points (each representing a Unicode character)
found in the input stream.

Finally, write the same program in a high-level language of your choice.

Unlike for the concatenate program, you only need to process the program’s standard
input stream and you do not need to handle the case where names of files are passed as
command line arguments.

You may use the script test-unicodecount.sh to test your code. Independent of the
size of the input stream, your program must not use more than 50MB of virtual memory.

What to submit:

Submit a tar file with your answers, containing the files:

• answers.txt, a UTF-8 encoded text file with your answers,

• a C file concatenate.c containing your implementation for part 2,

• a C file unicodecount.c containing your C implementation for part 4,

• a file concatenate.? with a suitable suffix containing your implementation for
part 3 in another language,

• a file unicodecount.? with a suitable suffix containing your implementation for
part 4 in another language.

Do not submit compiled executables. All 4 required programs are short programs.

6

	Using Linux
	Understanding Command Line Arguments and Standard I/O in Unix
	Understanding how to access the Standard Input and Output Streams in your Preferred Language
	Understanding Character-Based I/O

