
CS 3214, Fall 2019
Malloc Lab: Writing a Thread-safe Dynamic Storage

Allocator
Due date: see course website

1 Introduction

In this lab you will be writing a thread-safe dynamic storage allocator for C programs, i.e., your
own version of the malloc, free and realloc routines. You are encouraged to explore the
design space creatively and implement an allocator that is correct, efficient, and fast.

2 Logistics

You may work in a group of up to two people. Any clarifications and revisions to the assignment
will be posted on the forum.

3 Hand Out Instructions

We will again be using Git for this project. The upstream Gitlab repository is located at https:
//git.cs.vt.edu/cs3214-staff/malloclab. To begin, you will fork the repository using
the link on Gitlab. Then, you should set your repository visibility to private in the settings for
your fork. Not doing so is a potential honor code violation. You may also give your partner access
to the repository in the settings. From there, both partners may clone the repository using git
clone <repository> and begin work as with projects 1 and 2.

The malloclab directory contains a number of files. The only file you will be creating and handing
in is mm.c. You should do so by invoking make handin from a lab machine, or submit.pl p3
mm.c. The mdriver.c program is a driver program that allows you to evaluate the performance
of your solution. Use the command make to generate the driver code and run it with the command
./mdriver -V. (The -V flag displays helpful summary information.)

We will compile the allocator in 32-bit mode and use the 32-bit model. Consequently, each pointer
is represented as a 32-bit value, and the integer types int, long, and size t are each 32 bits wide.

1

https://git.cs.vt.edu/cs3214-staff/malloclab
https://git.cs.vt.edu/cs3214-staff/malloclab


Looking at the file mm.c you’ll notice a C structure team into which you should insert the re-
quested identifying information about the one or two students comprising your programming
team. You may choose the team name freely. Please use your SLO (@cs.vt.edu) accounts for the
email addresses. Do this right away so you don’t forget.

When you have completed the lab, you will hand in only one file (mm.c), which contains your
solution. Keep in mind that any changes you may have made to any of the other files will not be
considered when grading! We again provide the doubly-linked list implementation you’ve already
used for the shell assignment, should your implementation need it.

This project also has a small extra credit part. For extra credit, you need to implement addi-
tional support for a 64 bit architecture. At the same time, the modified implementation should
still preserve support for 32 bit architectures. Modifications must not affect any performance or
correctness aspects of your original implementation (i.e. tests should still give comparable per-
formance). To be considered for extra credit, you need to submit malloclab separately under the
extra credit section. (This is in addition to your normal project submission.)

4 How to Work on the Lab

Your dynamic storage allocator will consist of the following four functions, which are declared in
mm.h and defined in mm.c.

int mm_init(void);
void *mm_malloc(size_t size);
void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);

These functions obey the following semantics:

• mm init: Before calling mm malloc mm realloc or mm free, the application program
(i.e., the trace-driven driver program that you will use to evaluate your implementation)
calls mm init to perform any necessary initializations, such as allocating the initial heap
area. The return value should be -1 if there was a problem in performing the initialization, 0
otherwise.

• mm malloc: The mm malloc routine returns a pointer to an allocated block payload of at
least size bytes. The entire allocated block should lie within the heap region and should
not overlap with any other allocated chunk.

Just like the standard C library (libc), whose malloc always returns payload pointers that
are aligned to 8 bytes, your malloc implementation should do likewise and always return
8-byte aligned pointers. The ALIGNMENT value of 8 bytes is encoded in the macro ALIGN-
MENT defined in config.h.

2



• mm free: The mm free routine frees the block pointed to by ptr. It returns nothing. This
routine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier
call to mm malloc or mm realloc and has not yet been freed.

• mm realloc: The mm realloc routine returns a pointer to an allocated region of at least
size bytes with the following constraints.

– if ptr is NULL, the call is equivalent to mm malloc(size);

– if size is equal to zero, the call is equivalent to mm free(ptr);

– if ptr is not NULL, it must have been returned by an earlier call to mm malloc or
mm realloc. The call to mm realloc changes the size of the memory block pointed
to by ptr (the old block) to size bytes and returns the address of the new block. Notice
that the address of the new block might be the same as the old block, or it might be
different, depending on your implementation, the amount of internal fragmentation in
the old block, and the size of the realloc request.
The contents of the new block are the same as those of the old ptr block, up to the
minimum of the old and new sizes. Note that the new size may be smaller than the old
size. Everything else is uninitialized. For example, if the old block is 8 bytes and the
new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized. Similarly, if the old block is
8 bytes and the new block is 4 bytes, then the contents of the new block are identical to
the first 4 bytes of the old block.

These semantics match the semantics of the corresponding libc malloc, realloc, and free
routines. Type man malloc to the shell for complete documentation.

5 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently.
They are difficult to program correctly because they involve untyped pointer manipulation. You
may find it very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?

• Are there any contiguous free blocks that somehow escaped coalescing?

• Is every free block actually in the free list?

• Do the pointers in the free list point to valid free blocks?

• Do any allocated blocks overlap?

• Do the pointers in a heap block point to valid heap addresses?

3



Your heap checker will consist of the function int mm check(void) in mm.c. It will check any
invariants or consistency conditions you consider prudent. It returns a nonzero value if and only
if your heap is consistent. You are not limited to the listed suggestions nor are you required to
check all of them. You are encouraged to print out error messages when mm check fails.

This consistency checker is only for your own debugging during development. When you submit
mm.c, make sure to remove any calls to mm check as they will slow down your throughput.

6 Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You
can invoke the following functions in memlib.c:

• void *mem sbrk(int incr): Expands the heap by incr bytes, where incr is a positive
non-zero integer and returns a generic pointer to the first byte of the newly allocated heap
area. The semantics are identical to the Unix sbrk function, except that mem sbrk accepts
only a positive non-zero integer argument, and except that mem sbrk returns NULL on
failure rather than -1.

• void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

• void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

• size t mem heapsize(void): Returns the current size of the heap in bytes.

• size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux sys-
tems).

7 The Trace-driven Driver Program

The driver program mdriver.c in the malloclab distribution tests your mm.c package for cor-
rectness, space utilization, and throughput. The driver program is controlled by a set of trace files,
examples of which are included in the tar distribution. Each trace file contains a sequence of allo-
cate, reallocate, and free directions that instruct the driver to call your mm malloc, mm realloc,
and mm free routines in some sequence. To grade your submission, we will use the trace files in
the default directory
/home/courses/cs3214/malloclab/traces.

The driver mdriver.c accepts the following command line arguments:

• -s: Run the trace files with a 0.75, 1.0, and 1.25 multiplier on the sizes. This will be used for
grading.

• -t <tracedir>: Look for the default trace files in directory tracedir instead of the de-
fault directory defined in config.h.

4



• -f <tracefile>: Use one particular tracefile for testing instead of the default set of
tracefiles.

• -h: Print a summary of the command line arguments.

• -l: Run and measure libc malloc in addition to the student’s malloc package.

• -v: Verbose output. Print a performance breakdown for each tracefile in a compact table.

• -V: More verbose output. Prints additional diagnostic information as each trace file is pro-
cessed. Useful during debugging for determining which trace file is causing your malloc
package to fail.

• -n: No heap randomization. This will use a fixed-address memory region on which to
simulate the heap. Use this if you need to track down corruption of specific addresses, for
instance via gdb’s watchpoints.

8 Programming Rules

• You must not change any of the interfaces in mm.h.

• You must not invoke any memory-management related library calls or system calls. This
rule forbids the use of malloc, calloc, free, realloc, sbrk, brk or any variants of
these calls in your code. Using these calls would not make sense because this lab asks you
to implement their functionality.

• For consistency with the libc malloc package, which returns blocks aligned on 8-byte
boundaries, your allocator must always return pointers that are aligned to 8-byte bound-
aries. The driver will enforce this requirement for you.

• You must not implement a pure implicit list allocator (the book comes with an example of
how to do that).

9 Thread-Safety and Scalability

This semester, the driver program supports benchmarking of your allocator with multiple threads
(option -m <n >). It is easy to make an allocator safe using a global lock, as the provided
mm ts.c sketch shows.

Try to come up with better strategies to increase the multi-threaded throughput of your allocator.

10 Evaluation

You will receive zero points if you break any of the rules or your code is buggy and crashes the
driver. Otherwise, your grade will be calculated as follows:

5

http://www.delorie.com/gnu/docs/gdb/gdb_30.html


• Correctness (35 points). The points are awarded if your solution passes the correctness tests
performed by the driver program.

Minimum Requirement: Passing the correctness portion of the test for all provided traces
is a minimum requirement for this project, as stipulated in the syllabus.

• Single-threaded Performance (35 points). Two performance metrics will be used to evaluate
your solution:

– Space utilization: The ratio between the peak aggregate amount of memory used by the
driver (i.e., allocated via mm malloc or mm realloc but not yet freed via mm free)
and the size of the heap used by your allocator. The optimal ratio equals to 1 — in
that case, the heap grew exactly as much as was needed to accommodate the aggre-
gate amount of allocated memory when at its peak. You should find good policies to
minimize fragmentation in order to make this ratio as close as possible to the optimum.

– Throughput: The average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing a perfor-
mance index, P , which is a weighted sum of the space utilization and throughput

P = wU + (1− w)min

(
1,

T

Topt

)

where U is your space utilization, T is your throughput, and Topt is the throughput of an
optimized implementation of malloc on our system on the default traces.1 The performance
index favors space utilization over throughput, with a value of w = 0.6.

Observing that both memory and CPU cycles are expensive system resources, we adopt this
formula to encourage balanced optimization of both memory utilization and throughput.
Ideally, the performance index will reach P = w + (1 − w) = 1 or 100%. Since each metric
will contribute at most w and 1 − w to the performance index, respectively, you should not
go to extremes to optimize either the memory utilization or the throughput only. To receive
a good score, you must achieve a balance between utilization and throughput.

• Multi-threaded Performance (20 points). Points will be awarded for techniques that improve
multi-threaded throughput beyond that achieved by a single global lock.

• Documentation, Style, and Revision Control (10 points).

– Your code should be decomposed into functions and use as few global variables as
possible.

– Your code should begin with a header comment that describes the structure of your
free and allocated blocks, the organization of the free list, and how your allocator ma-
nipulates the free list. Each function, global or static, should be preceded by a header
comment that describes what the function does.

1The value for Topt is a constant in the driver, chosen to be 14,600 Kops/s this semester.

6



– Your heap consistency checker mm check should be thorough and well-documented.

– You should make proper use of Git in your group. This includes periodically checking
in milestones in your implementation, and using descriptive log messages.

11 Handin Instructions

To handin the file, one team member must run ’make handin’, which simply starts the
submit.pl script for project 3 (p3).

12 Hints

• Use the mdriver -f option. During initial development, using tiny trace files will simplify
debugging and testing. We have included two such trace files (short1,2-bal.rep) that
you can use for initial debugging.

• Use the mdriver -v and -V options. The -v option will give you a detailed summary for
each trace file. The -V will also indicate when each trace file is read, which will help you
isolate errors.

• Compile with gcc -g and use a debugger. A debugger will help you isolate and identify out of
bounds memory references. There are two definitions for CFLAGS in the Makefile: choose
the one containing ’-g’ for debugging, and the one containing ’-O3’ to benchmark the per-
formance of your solution. After changing the Makefile, do make clean all.

• Study the malloc implementation in the textbook. The textbook has a detailed example of a
simple allocator based on an implicit free list. Don’t start working on your allocator until
you understand everything about the simple implicit list allocator. Note, however, that the
C structures used in the naive allocator we provide in our version were added by me and
are not discussed in the book. The book advocates the use of macros such as GET or PUT,
see http://csapp.cs.cmu.edu/public/ics2/code/vm/malloc/mm.c. This approach was re-
quired when C compilers (notably, gcc) required that macros and direct pointer arithmetic
was used to emit well-performing code. This is no longer the case. See also ”Define suitable
C structures” below.

• Consider edge conditions. Consider the case that a block that is freed may not have a left or
right neighbor. A possible strategy is to initialize your heap such that it will appear that
there are always allocated “fence” blocks to the left and to the right, which means that the
above case never arises.

• Consider small requests. Depending on which strategy you choose, you will need to round up
small requests. Don’t just think about what happens when allocating a block, consider also
what you’ll have to do when freeing this block. Freeing the block may include inserting the
block into your free list or lists (or other data structure if you implement one), and thus it

7

http://csapp.cs.cmu.edu/public/ics2/code/vm/malloc/mm.c


must be large enough to hold all link elements plus boundary tags (if used). You will need
to consider this both when requesting more memory via mem sbrk() and when splitting a
block that may be too large.

• Encapsulate your pointer arithmetic in static functions, rather than in C preprocessor macros as
suggested in the book. Pointer arithmetic in memory managers is confusing and error-prone
because casting is necessary. You can reduce the complexity significantly by writing static
functions for your pointer operations, which minimize and localize these casts.

• Define suitable C structures to minimize casting. See the provided mm.c file for an example.
Note that it doesn’t contain a single cast. Exploit the structure alignment strategies of the
compiler, along with the use of the offsetof macro, defined in stddef.h.

• Use ’assert()’ statements liberally. Uses of the assert() macro document the assertions you make
about the code, and they detect errors as early as possible.

• Know how to interpret repeating values. The provided driver will write a repeating byte value
in each memory location of the payload. The byte value is different for each allocated block.
If you detect such a repeating value in your headers, such as 0x2f2f2f2fwhere you expect
a size, you’ll know that you have carved out too little memory in the allocation request that
returned the block to the left.

• Use void * pointer arithmetic. Recall that in C, an expression p + i for a pointer P *p; and
an integer i will increment the address of p by sizeof(P) * i bytes. gcc provides a
convenient extension by declaring that sizeof(void) is equal to 1. Using void * pointers
has the advantage that they can be assigned to and from any other pointer without requiring
a cast.

• Do your implementation in stages. The first 9 traces contain requests to malloc and free.
The last 2 traces contain requests for realloc, malloc, and free. We recommend that
you start by getting your malloc and free routines working correctly and efficiently on
the first 9 traces. Only then should you turn your attention to the realloc implementation.
For starters, build realloc on top of your existing malloc and free implementations.
But to get really good performance, you will need to build a stand-alone realloc.

• Use a profiler. You may find the gprof tool helpful for optimizing performance.

• Start early! It is possible to write an efficient malloc package with a few pages of code, but it
is dense and, at times, tricky code. So don’t procrastinate, and good luck!

8


	Introduction
	Logistics
	Hand Out Instructions
	How to Work on the Lab
	Heap Consistency Checker
	Support Routines
	The Trace-driven Driver Program
	Programming Rules
	Thread-Safety and Scalability
	Evaluation
	Handin Instructions
	Hints

