
CS3214 Fall 2009 Project 3 - “Extensible Shell”

Due Date: Friday, Oct 30, 11:59pm (Late days may be used.)

To give everybody a chance to test others’ plug-ins, plugins are due: Thursday, Oct 29,
11:59pm with no extensions.

This project can be done in groups of 2 students.

1 Introduction

This assignment introduces you to the principles of process management and job control
in a Unix-like operating system. In addition, the assignment will give you insights into
the design and use of extensible systems.

This is an open-ended assignment. Rather than pre-defining some required functional-
ity, we encourage you to define the scope of this project yourself. We will however set
minimum requirements, and, separately, provide a rough idea of what we expect most
students to accomplish.

2 Base Functionality

A shell receives line-by-line input from a terminal. If the user inputs a built-in command,
the shell will execute this command. Otherwise, the shell will interpret the input as the
name of a program to be executed, along with arguments to be passed to it. In this case,
the shell will fork a new child process and execute the program in the context of the child.
Normally, the shell will wait for a command to complete before reading the next com-
mand from the user. If the user appends an ampersand ‘&’ to a command, the command
is started in the background and the shell will return to the prompt immediately.

The shell provides job control. A user may interrupt foreground jobs, send foreground jobs
into the background, and vice versa. At a given point in time, a shell may run zero or more
background jobs and zero or one foreground jobs. If there is a foreground job, the shell
waits for it to complete before printing another prompt and reading the next command.
In addition, the shell informs the user about status changes of the jobs it manages. For
instance, jobs may exit, or terminate due to a signal, or be stopped for several reasons.

At a minimum, we expect that your shell has the ability to start foreground and back-
ground jobs and implements the built-in commands ‘jobs,’ ‘fg,’ ‘bg,’ ‘kill,’ and ‘stop.’ The
semantics of these commands should match the semantics of the same-named commands
in bash or tcsh. The ability to correctly respond to ˆC (SIGINT) and ˆZ (SIGTSTP) is ex-
pected, as are informative messages about the status of the children managed. Like bash
or tcsh, you should use consecutively numbered small integers to enumerate your jobs.

For the minimum functionality, the shell need not support pipes (|), I/O redirection
(< > >>), nor the ability to run programs that require exclusive access to the terminal

Created by G. Back (gback@cs.vt.edu) 1 Revision : 1.3 October 10, 2009

CS3214 Fall 2009 Project 3 - “Extensible Shell”

(e.g., vim).

We expect most students to implement pipes, I/O redirection, and managing the control-
ling terminal to ensure that jobs that require exclusive access to the terminal obtain such
access. Beyond that, esh’s extensibility, described in Section 6 should allow for plenty of
creative freedom.

3 Strategy

You will need to use fork(), a variant of exec*(), and the waitpid() system calls.

3.1 Signal Handling

You will need to catch SIGCHLD to learn about when the shell’s child processes change
status. Since child processes execute concurrently with respect to the parent shell, it is
impossible to predict when a child will exit (or terminate with a signal), and thus it is
impossible to predict when this signal will arrive. In the worst case, a child may have
terminated by the time the parent() returns from fork()!

You will need to block the signal in those sections of your code where you access data
structures that are also needed by the handler that is executed when this signal arrives.
For example, consider the data structure used to maintain the current set of jobs. A new
job is added after a child process has been forked; a job may be removed when SIGCHLD
is received. To avoid a situation where the job has not yet been added when SIGCHLD
arrives, or - worse - a situation in which SIGCHLD arrives while the shell is adding the
job, the parent should block SIGCHLD until after it completed adding the job to the list.
If the SIGCHLD is delivered to the shell while the shell blocks this signal, it is marked
pending and will be received as soon as the shell unblocks this signal.

Use sigprocmask(2) to block and unblock signals. To set up signal handlers, use the sigac-
tion(2) system call. Set sa flags to SA RESTART. The mask of blocked signals is inherited
when fork() is called. Consequently, the child will need to unblock any signals the parent
blocked before calling fork().

3.2 Process Groups

Each process in Unix is part of a group. Each process group has a leader. To create a new
group with itself as the leader, a process simply calls setpgid(0, 0). The id of a process
group is the process id of the leader. Child processes inherit the process group of their
parent process initially. They can then form their own group if desired, or their parent
process can place them into a different process group via setpgid().

Created by G. Back (gback@cs.vt.edu) 2 Revision : 1.3 October 10, 2009

CS3214 Fall 2009 Project 3 - “Extensible Shell”

Process groups are treated as an ensemble for the purpose of signal delivery and when
waiting for processes. Specifically, the kill(2), killpg(2), and waitpid(2) system calls sup-
port the naming of process groups1. In addition, process groups are used to manage
access to the terminal, as described next.

3.3 Managing Access To The Terminal

Running multiple processes on the same terminal creates a sharing issue: if multiple pro-
cesses attempt to read from the terminal, which process should receive the input? Sim-
ilarly, some programs - such as vi - output to the terminal in a way that does not allow
them to share the terminal with others.

To solve this problem, Unix introduced the concept of a foreground process group. Each
terminal maintains such a group. If a process in a process group that is not the foreground
process group attempts to perform an operation that would require exclusive access, it is
sent a signal: SIGTTOU or SIGTTIN, depending on whether the use was for output or
input. The default action is to suspend the process. In this case, the parent can learn
about this status change by calling waitpid(). WIFSTOPPED(status) will be true in this
case. To allow this process to continue, its process group must be made the foreground
process group of the controlling terminal via tcsetpgrp(), and then the process must be
sent a SIGCONT signal.

Signals that are sent as a result of user input, such as SIGINT or SIGTSTP, are also sent to
a terminal’s foreground process group.

Reduced functionality: If you do not implement access to the terminal for programs that
require such exclusive access, you may use the following simplified technique: create
a new process group for each job, but keep the shell’s process group as the foreground
process group as far as the terminal is concerned. (This would happen by default if you
do not call tcsetpgrp() at all.) Signals such as SIGINT or SIGTSTP are then delived to the
shell. You can catch them and forward them (via ’killpg(2)’) to the current foreground
job. If you do implement sharing of the terminal, do not use this technique.

3.4 Pipes and I/O Redirection

To implement pipes, use the pipe(2) system call. A pipe must be set up by the parent
shell process before a child is forked. Forking a child will inherit the file descriptors that
are part of the pipe(). The child must then redirect its stdout/stdin file descriptor to the
pipe’s input or output end as needed using the dup2(2) system call.

Note that all processes that are part of a pipeline are children of the shell, e.g., if a user
runs a | b then the process executing b is not a child process of the process executing

1Note the idiosynchracies of the API: kill(-pid, sig) does the same as killpg(pid, sig). Make sure to use
the correct call.

Created by G. Back (gback@cs.vt.edu) 3 Revision : 1.3 October 10, 2009

CS3214 Fall 2009 Project 3 - “Extensible Shell”

the program a.

Generally, a pipeline of commands is considered one job. All processes that form part of
a pipeline should thus be part of the same process group.

Although the parent shell process creates the pipe, it will not actually write to it or read
from it. Make sure that the parent shell process closes the file descriptors referring to the
pipe after the child was forked in order to avoid leaking file descriptors. Closing a file
descriptor affects only the current process’s access to the underlying object. When the
parent shell closes the file descriptor referring to the pipe it created, the child processes
will still be able to access the pipe’s ends. This is true for file descriptors in general. Each
file descriptor represents a reference to an underlying object. The actual object (such as a
pipe or file) is closed only when the last process who has a file descriptor referring to the
object closes it.

Additional information can be found in the GNU C library manual, available at http:
//www.gnu.org/s/libc/manual/html node/index.html. Read, in particular, the
sections on Signal Handling and Job Control.

4 Provided Code

The provided code is in the directory c̃s3214/esh-20091010. If updates or bug fixes are
required, they will be announced on the forum.

The code contains a command line parser that implements the following grammar:

cmd_line : cmd_list

cmd_list :
| pipeline
| cmd_list ’;’
| cmd_list ’&’
| cmd_list ’;’ pipeline
| cmd_list ’&’ pipeline

pipeline : command
| pipeline ’|’ command

command : WORD
| input
| output
| command WORD
| command input
| command output

input : ’<’ WORD

output : ’>’ WORD

Created by G. Back (gback@cs.vt.edu) 4 Revision : 1.3 October 10, 2009

http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/Signal-Handling.html#Signal-Handling
http://www.gnu.org/s/libc/manual/html_node/Job-Control.html#Job-Control

CS3214 Fall 2009 Project 3 - “Extensible Shell”

| ’>>’ WORD

Look at the provided esh.c main function to see how to invoke the parser. If a com-
mand line is semantically correct, the parser code will create a esh command line data
structure, which refers to a list of esh pipeline structures. Each esh pipeline corre-
sponds to a job. It may consist of one or more individual commands that form a pipeline.
Each command is represented as a esh command structure. Study the definitions of these
structures.

By default, the provided code will read a line, parse it, and dump the parsed command
line to stdout.

5 Testing

Since we do not describe what functionality to implement, it is up to you to develop a
testing strategy.

We will provide a driver that can help you automate your testing scenarios, as well as
some sample client programs.

6 Plug-Ins

It is often impossible to anticipate the future uses and needs of a system or application.
Extensible architectures address this problem by allowing the loading of plug-ins that
provide additional functionality or enhance built-in functionality.

When started with the ’-p dir’ flag, ’esh’ will dynamically load shared libraries contained
in the directory ’dir.’ Multiple -p flags may be provided. Each shared library must define
a strong global symbol named esh module, which shall refer to an instance of struct
esh plugin. This struct contains information about the plug-in, including a set of func-
tion pointers to invoke the plug-in’s functionality.

Multiple plug-ins may be loaded; a plug-in may specify its rank relative to others. Your
shell should invoke the plug-ins’ functions in increasing rank order. If plug-ins share
the same rank, their execution order is not defined. Some functionality (e.g., built-ins)
requires that invocation stop if a plug-in provides this functionality.

Here are some ideas for plug-ins:

• Change current directory (cd)

• Glob expansion (e.g., *.c)

• Setting and unsetting environment variables

Created by G. Back (gback@cs.vt.edu) 5 Revision : 1.3 October 10, 2009

CS3214 Fall 2009 Project 3 - “Extensible Shell”

• Timing commands: ”time” or time-outs.

• Aliases

• Shell variables

• pushd, popd, etc.

• Command-line history (perhaps using’s GNU History library)

• Backquote substitution

• Smart command-line completion

• Embedding applications: scripting languages, web servers, etc.

A side-note on Unix philosophy - in general, Unix implements functionality using many
small programs and utilities. As such, built-in commands are often only those that must
be implemented within the shell, such as cd. Although the plug-ins I suggested above
are all of the kind that must be implemented within the shell, don’t feel limited by this
criterion.

You will note that the functions to read from the terminal and to parse the command
line are invoked indirectly as function pointers that are part of esh shell. Advanced
plug-ins may replace those if desired.

7 Honor Code

You will receive credit for every plug-in you write, and for every plug-in written by others
which your shell can successfully load and run. You should publish plug-ins you have
developed on the forum.

It is ok to sit together and debug a situation that arises if a plug-in written by one group
does not run successfully in another group’s shell.

However, you may not share any code - electronically or otherwise - for the shell or a plug-in -
across groups. To allow others access to your plug-ins, copy the .so files, and only the .so
files, to /web/people/< yoursloid >/esh-plugins where yoursloid is your SLO
id. This directory is accessible to all students. In addition, provide a description of the
plugin.

In addition, note that the code contained in the plug-ins you load will run with the full
privileges of the user executing the shell. In practice, this setup requires that you trust the
provider of the plug-in. The “Acceptable Use of Information Systems” policy, published
at http://www.vt.edu/about/acceptable-use.html, applies. If you are in doubt
whether a plug-in you’ve written would violate this policy, please ask first.

Created by G. Back (gback@cs.vt.edu) 6 Revision : 1.3 October 10, 2009

http://www.vt.edu/about/acceptable-use.html

CS3214 Fall 2009 Project 3 - “Extensible Shell”

8 Grading

Coding Style. Your coding style should match the style of the provided code. You
should follow proper coding conventions with respect to documentation, naming, and
scoping.

You must check the return values of all system calls and library functions, except for
close(2), closedir(3), and malloc(3). (Production code would need to check for those as
well; this is a simplification for this project.)

Submission. You should submit a design document as an ASCII document. Describe
the functionality you implemented, the design you used, and describe how you tested it.

Include your test cases, and a script or scenario to run them. The TA will assign credit only
for the functionality for which test cases exist.

You should submit a .tar.gz file of your ’src’ directory, which contains a Makefile. Please
use the submit.pl script or web page and submit as ’p3’. Only one group member need
submit. List both group members in your README file.

We expect to award about 30-40 points for the minimum functionality, about 80-100 points
for the functionality we expect most students to implement, and between 5-25 points per
plug-in you’ve developed, depending on its complexity. Running a plug-in others have
written will give you 2 points per plug-in, with a to-be-determined maximum. To provide
an incentive to help others run your plug-ins, we’ll also award 2 points for each group
that can run your plug-in, with a to-be-determined maximum.

9 Final Note

I believe there are 2 unique aspects about this project. First, the “specification” for this
project is intentionally open. I believe this setup mirrors the situation you will commonly
encounter in your career in which the requirements of a project are not set in stone at the
beginning of the project, but evolve as you develop and test your work.

Second, I encourage you to interact with each other by running each other’s plug-ins.
This will work only if you actively publish your plug-ins and seek out and test what
others have published, and do so in time before the deadline. My goal in choosing this
approach is to encourage the class to work together, while at the same time ensuring that
each student masters the material individually.

Good Luck!

Created by G. Back (gback@cs.vt.edu) 7 Revision : 1.3 October 10, 2009

	Introduction
	Base Functionality
	Strategy
	Signal Handling
	Process Groups
	Managing Access To The Terminal
	Pipes and I/O Redirection

	Provided Code
	Testing
	Plug-Ins
	Honor Code
	Grading
	Final Note

