
CS 3114 Data Structures & Algorithms Project 1: File Navigation and Parsing

Version 5.00 This is a purely individual assignment! 1

File Navigation and Text Parsing in Java

This assignment involves implementing a smallish Java program that performs some basic file parsing and navigation tasks, and

parsing of character strings.

The program will deal with two input files. The first input file, whose name will be supplied from the command line, contains a

collection of data records pertaining to geographical features, obtained from the website for the USGS Board on Geographic

Names (geonames.usgs.gov). The file begins with a descriptive header line, followed by a sequence of GIS records, one per line,

which contain the following fields in the indicated order:

Figure 1: Geographic Data Record Format

Name Type
Length/

Decimals
Short Description

Feature ID Integer 10

Permanent, unique feature record identifier and official feature name Feature
Name

String 120

Feature
Class

String 50 See Figure 3 later in this specification

State Alpha String 2

The unique two letter alphabetic code and the unique two number code for a US State State
Numeric

String 2

County
Name

String 100

The name and unique three number code for a county or county equivalent
County
Numeric

String 3

Primary
Latitude
DMS

String 7

The official feature location
 DMS-degrees/minutes/seconds
 DEC-decimal degrees.

Note: Records showing "Unknown" and zeros for the latitude and longitude DMS and
decimal fields, respectively, indicate that the coordinates of the feature are unknown.
They are recorded in the database as zeros to satisfy the format requirements of a
numerical data type. They are not errors and do not reference the actual geographic
coordinates at 0 latitude, 0 longitude.

Primary
Longitude
DMS

String 8

Primary
Latitude
DEC

Real Number 11/7

Primary
Longitude
DEC

Real Number 12/7

Source
Latitude
DMS

String 7

Source coordinates of linear feature only (Class = Stream, Valley, Arroyo)
 DMS-degrees/minutes/seconds
 DEC-decimal degrees.

Note: Records showing "Unknown" and zeros for the latitude and longitude DMS and
decimal fields, respectively, indicate that the coordinates of the feature are unknown.
They are recorded in the database as zeros to satisfy the format requirements of a
numerical data type. They are not errors and do not reference the actual geographic
coordinates at 0 latitude, 0 longitude.

Source
Longitude
DMS

String 8

Source
Latitude
DEC

Real Number 11/7

Source
Longitude
DEC

Real Number 12/7

Elevation
(meters)

Integer 5 Elevation in meters above (-below) sea level of the surface at the primary coordinates

Elevation
(feet)

Integer 6 Elevation in feet above (-below) sea level of the surface at the primary coordinates

http://geonames.usgs.gov/

CS 3114 Data Structures & Algorithms Project 1: File Navigation and Parsing

Version 5.00 This is a purely individual assignment! 2

Map Name String 100 Name of USGS base series topographic map containing the primary coordinates.

Date
Created

String

The date the feature was initially committed to the database.

Date Edited String

The date any attribute of an existing feature was last edited.

Notes:

 See https://geonames.usgs.gov/domestic/states_fileformat.htm for the full field descriptions.

 The type specifications used here have been modified from the source (URL above) to better reflect the realities of your

programming environment.

 Latitude and longitude may be expressed in DMS (degrees/minutes/seconds, 0820830W) format, or DEC (real number,

-82.1417975) format. In DMS format, latitude will always be expressed using 6 digits followed by a single character

specifying the hemisphere, and longitude will always be expressed using 7 digits followed by a hemisphere designator.

 Although some fields are mandatory, some may be omitted altogether. Best practice is to treat every field as if it may

be left unspecified. Certain fields are necessary in order to index a record: the feature name and the primary latitude

and primary longitude. If a record omits any of those fields, you may discard the record, or index it as far as possible.

In the GIS record file, each record will occur on a single line, and the fields will be separated by pipe ('|') symbols. Empty

fields will be indicated by a pair of pipe symbols with no characters between them. See the posted VA_Monterey.txt file for

many examples.

GIS record files are guaranteed to conform to the syntax described above, so there is no explicit requirement that you validate the

files. On the other hand, some error-checking during parsing may help you detect errors in your parsing logic.

A file can be thought of as a sequence of bytes, each at a unique offset from the beginning of the file, just like the cells of an

array. So, each GIS record begins at a unique offset from the beginning of the file.

Line Termination

Each line of a text file ends with a particular marker (known as the line terminator). In MS-DOS/Windows file systems, the line

terminator is a sequence of two ASCII characters (CR + LF, 0X0D0A). In Unix systems, the line terminator is a single ASCII

character (LF). Other systems may use other line termination conventions.

Why should you care? Which line termination is used has an effect on the file offsets for all but the first record in the data file.

As long as we’re all testing with files that use the same line termination, we should all get the same file offsets. But if you

change the file format (of the posted data files) to use different line termination, you will get different file offsets than are shown

in the posted log files. Most good text editors will tell you what line termination is used in an opened file, and also let you

change the line termination scheme.

All that being said, as project is auto-graded, all input files will have the same line termination, and the grading of correctness

will depend on whether you report the correct search results, not on the file offsets you report.

https://geonames.usgs.gov/domestic/states_fileformat.htm

CS 3114 Data Structures & Algorithms Project 1: File Navigation and Parsing

Version 5.00 This is a purely individual assignment! 3

Figure 2: Sample Geographic Data
Records

Note that some record fields are optional, and

that when there is no given value for a field, there

are still delimiter symbols for it.

Also, some of the lines are "wrapped" to fit into

the text box; lines are never "wrapped" in the

actual data files.

F
E
A
T
U
R
E
_
I
D
|
F
E
A
T
U
R
E
_
N
A
M
E
|
F
E
A
T
U
R
E
_
C
L
A
S
S
|
S
T
A
T
E
_
A
L
P
H
A
|
S
T
A
T
E
_
N
U
M
E
R
I
C
|
C
O
U
N
T
Y
_
N
A
M
E
|
C
O
U
N
T
Y
_
N
U
M
E
R
I
C
|
P
R
I
M
A
R
Y
_
L
A
T
_
D
M
S
|
P
R
I
M
_
L
O
N
G
_
D
M
S
|
P
R
I
M
_
L
A
T
_
D
E
C
|
P
R
I
M
_
L
O
N

G
_
D
E
C
|
S
O
U
R
C
E
_
L
A
T
_
D
M
S
|
S
O
U
R
C
E
_
L
O
N
G
_
D
M
S
|
S
O
U
R
C
E
_
L
A
T
_
D
E
C
|
S
O
U
R
C
E
_
L
O
N
G
_
D
E
C
|
E
L
E
V
_
I
N
_
M
|
E
L
E
V
_
I
N
_
F
T
|
M
A
P
_
N
A
M
E
|
D
A
T
E
_
C
R
E
A
T
E
D
|
D
A
T
E
_
E
D
I
T
E
D

1
4
7
9
1
1
6
|
M
o
n
t
e
r
e
y

E
l
e
m
e
n
t
a
r
y

S
c
h
o
o
l
|
S
c
h
o
o
l
|
V
A
|
5
1
|
R
o
a
n
o
k
e

(
c
i
t
y
)
|
7
7
0
|
3
7
1
9
0
6
N
|
0
7
9
5
6
0
8
W
|
3
7
.
3
1
8
3
7
5
3
|
-

7
9
.
9
3
5
5
8
5
7
|
|
|
|
|
3
2
3
|
1
0
6
0
|
R
o
a
n
o
k
e
|
0
9
/
2
8
/
1
9
7
9
|
0
9
/
1
5
/
2
0
1
0

1
4
8
1
3
4
5
|
A
s
b
u
r
y

C
h
u
r
c
h
|
C
h
u
r
c
h
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
6
0
7
N
|
0
7
9
3
3
1
2
W
|
3
8
.
4
3
5
3
9
8
1
|
-
7
9
.
5
5
3
3
8
0
7
|
|
|
|
|
8
1
8
|
2
6
8
4
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
1
8
5
2
|
B
l
u
e

G
r
a
s
s
|
P
o
p
u
l
a
t
e
d

P
l
a
c
e
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
3
0
0
0
N
|
0
7
9
3
2
5
9
W
|
3
8
.
5
0
0
1
1
8
8
|
-
7
9
.
5
4
9
7
7
0
2
|
|
|
|
|
7
7
7
|
2
5
4
9
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
1
8
7
8
|
B
l
u
e
g
r
a
s
s

V
a
l
l
e
y
|
V
a
l
l
e
y
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
9
5
3
N
|
0
7
9
3
2
2
2
W
|
3
8
.
4
9
8
1
7
4
5
|
-
7
9
.
5
3
9
4
9
2
|
3
8
2
6
0
1
N
|
0
7
9
3
8
0
0
W
|
3
8
.
4
3
3
7
3
0
9
|
-

7
9
.
6
3
3
3
8
3
3
|
7
5
9
|
2
4
9
0
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
2
1
1
0
|
B
u
c
k

H
i
l
l
|
S
u
m
m
i
t
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
1
9
0
2
N
|
0
7
9
3
3
5
8
W
|
3
8
.
3
1
7
3
4
5
2
|
-
7
9
.
5
6
6
1
5
7
7
|
|
|
|
|
1
0
0
3
|
3
2
9
1
|
M
o
n
t
e
r
e
y

S
E
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
2
1
7
6
|
B
u
r
n
e
r
s

R
u
n
|
S
t
r
e
a
m
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
5
0
9
N
|
0
7
9
3
4
0
9
W
|
3
8
.
4
1
9
2
8
7
3
|
-
7
9
.
5
6
9
2
1
4
4
|
3
8
2
5
3
1
N
|
0
7
9
3
5
3
8
W
|
3
8
.
4
2
5
2
7
7
8
|
-

7
9
.
5
9
3
8
8
8
9
|
8
4
8
|
2
7
8
2
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
2
3
2
4
|
M
o
u
n
t

C
a
r
l
y
l
e
|
S
u
m
m
i
t
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
1
5
5
6
N
|
0
7
9
3
3
5
3
W
|
3
8
.
2
6
5
6
7
9
9
|
-
7
9
.
5
6
4
7
6
8
2
|
|
|
|
|
6
9
8
|
2
2
9
0
|
M
o
n
t
e
r
e
y

S
E
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
2
4
3
4
|
C
e
n
t
r
a
l

C
h
u
r
c
h
|
C
h
u
r
c
h
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
9
5
3
N
|
0
7
9
3
3
2
3
W
|
3
8
.
4
9
8
1
7
4
4
|
-
7
9
.
5
5
6
4
3
7
1
|
|
|
|
|
7
7
3
|
2
5
3
6
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
2
5
5
7
|
C
l
a
y
l
i
c
k

H
o
l
l
o
w
|
V
a
l
l
e
y
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
1
6
1
3
N
|
0
7
9
3
2
3
8
W
|
3
8
.
2
7
0
4
0
2
1
|
-
7
9
.
5
4
3
9
3
4
3
|
3
8
1
7
3
3
N
|
0
7
9
3
3
2
4
W
|
3
8
.
2
9
2
5
|
-

7
9
.
5
5
6
6
6
6
7
|
5
7
3
|
1
8
8
0
|
M
o
n
t
e
r
e
y

S
E
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
2
7
8
5
|
C
r
a
b

R
u
n
|
S
t
r
e
a
m
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
1
7
0
7
N
|
0
7
9
3
1
4
4
W
|
3
8
.
2
8
5
4
0
1
8
|
-
7
9
.
5
2
8
9
3
4
|
3
8
1
9
0
3
N
|
0
7
9
3
4
1
5
W
|
3
8
.
3
1
7
5
|
-
7
9
.
5
7
0
8
3
3
3
|
5
7
9
|
1
9
0
0
|
M
o
n
t
e
r
e
y

S
E
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
2
9
5
0
|
D
a
v
i
s

R
u
n
|
S
t
r
e
a
m
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
1
8
2
4
N
|
0
7
9
3
0
5
3
W
|
3
8
.
3
0
6
7
9
0
3
|
-
7
9
.
5
1
4
7
6
7
1
|
3
8
2
0
5
7
N
|
0
7
9
3
5
0
5
W
|
3
8
.
3
4
9
1
6
6
7
|
-
7
9
.
5
8
4
7
2
2
2
|
6
0
1
|
1
9
7
2
|
M
o
n
t
e
r
e
y

S
E
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
3
2
8
1
|
E
l
k

R
u
n
|
S
t
r
e
a
m
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
9
3
6
N
|
0
7
9
3
1
5
3
W
|
3
8
.
4
9
3
4
5
2
4
|
-
7
9
.
5
3
1
4
3
6
2
|
3
8
3
1
2
1
N
|
0
7
9
3
0
5
6
W
|
3
8
.
5
2
2
6
1
8
5
|
-

7
9
.
5
1
5
6
0
2
7
|
7
5
7
|
2
4
8
4
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
3
4
9
2
|
F
o
r
k
s

o
f

W
a
t
e
r
s
|
L
o
c
a
l
e
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
8
5
6
N
|
0
7
9
3
0
3
1
W
|
3
8
.
4
8
2
3
4
1
7
|
-
7
9
.
5
0
8
6
5
7
5
|
|
|
|
|
7
0
5
|
2
3
1
3
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
3
5
2
7
|
F
r
a
n
k

R
u
n
|
S
t
r
e
a
m
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
9
5
3
N
|
0
7
9
3
3
1
0
W
|
3
8
.
4
9
8
1
7
4
4
|
-
7
9
.
5
5
2
8
2
5
8
|
3
8
3
3
0
4
N
|
0
7
9
3
3
4
1
W
|
3
8
.
5
5
1
2
2
8
5
|
-

7
9
.
5
6
1
4
3
8
1
|
7
8
0
|
2
5
5
9
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
3
6
4
7
|
G
i
n
s
e
n
g

M
o
u
n
t
a
i
n
|
S
u
m
m
i
t
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
8
5
0
N
|
0
7
9
3
1
3
9
W
|
3
8
.
4
8
0
6
7
5
|
-
7
9
.
5
2
7
5
4
7
|
|
|
|
|
9
7
8
|
3
2
0
9
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
3
8
6
0
|
G
u
l
f

M
o
u
n
t
a
i
n
|
S
u
m
m
i
t
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
9
4
0
N
|
0
7
9
3
1
0
3
W
|
3
8
.
4
9
4
5
6
3
6
|
-
7
9
.
5
1
7
5
4
6
8
|
|
|
|
|
1
0
0
6
|
3
3
0
0
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
3
9
1
6
|
H
a
m
i
l
t
o
n

C
h
a
p
e
l
|
C
h
u
r
c
h
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
1
7
4
0
N
|
0
7
9
3
7
0
7
W
|
3
8
.
2
9
4
5
6
7
7
|
-
7
9
.
6
1
8
6
5
9
1
|
|
|
|
|
8
2
3
|
2
7
0
0
|
M
o
n
t
e
r
e
y

S
E
|
0
9
/
2
8
/
1
9
7
9
|

1
4
8
4
0
9
7
|
H
i
g
h
l
a
n
d

H
i
g
h

S
c
h
o
o
l
|
S
c
h
o
o
l
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
2
4
2
6
N
|
0
7
9
3
4
4
4
W
|
3
8
.
4
0
7
1
3
8
7
|
-
7
9
.
5
7
8
9
3
3
3
|
|
|
|
|
8
7
9
|
2
8
8
4
|
M
o
n
t
e
r
e
y
|
0
9
/
2
8
/
1
9
7
9
|
0
9
/
1
5
/
2
0
1
0

1
4
8
4
0
9
9
|
H
i
g
h
l
a
n
d

W
i
l
d
l
i
f
e

M
a
n
a
g
e
m
e
n
t

A
r
e
a
|
P
a
r
k
|
V
A
|
5
1
|
H
i
g
h
l
a
n
d
|
0
9
1
|
3
8
1
9
0
5
N
|
0
7
9
3
4
3
9
W
|
3
8
.
3
1
8
1
7
8
5
|
-
7
9
.
5
7
7
5
4
7
|
|
|
|
|
9
5
4
|
3
1
3
0
|
M
o
n
t
e
r
e
y

S
E
|
0
9
/
2
8
/
1
9
7
9
|

.

.

.

CS 3114 Data Structures & Algorithms Project 1: File Navigation and Parsing

Version 5.00 This is a purely individual assignment! 4

Your program may be invoked from the command line, in either of the following ways:

java GISParser -offsets <GIS record file name>

java GISParser <GIS record file name> <commands file name>

Invoked in the first way, your program will parse the given GIS record file and write, to a file named offsets.txt, the file

offset and Feature Name field for each of the records found in the file, listed in the order the records occur in the input file.

Invoked in the second way, your program will process the given commands file (and NOT write out a list file offsets and Feature

Name values), and write its output to a file named results.txt. Each command must be echoed into the output file, on a

line by itself, numbered as shown in the posted log files. Following each echoed command, your program will write one line

reporting the results of carrying out that command, as described below.

The first input file will be a GIS record file, as described above. The second input file, whose name will also be supplied on the

command line, contains a sequence of search commands that must be processed. The only types of search that must be

supported are:

show_name<tab><offset>

If the offset is valid (see below), write the Feature Name field for the record that occurs at that offset

show_latitude<tab><offset>

show_longitude<tab><offset>

If the offset is valid (see below), write the primary latitude or primary longitude, as specified, for the record that occurs

at that offset. The specified fields should be separated by whitespace (your choice as to what). If the specified field is

not included in the record, write "Coordinate is not given".

The Primary Latitude and Longitude fields are given in the GIS records in two formats, DMS and DEC. You should

parse the DMS version. Your output must reformat the latitude or longitude in a human-friendly manner. Specifically:

1090224W 109d 2m 24s West

Note that latitude values will always consist of 6 decimal digits, followed by a hemisphere designator ('W' or 'E'), and

longitude values will always consist of 7 decimal digits, followed by a hemisphere designator ('S' or 'N'). The Java

String and Scanner classes both have useful methods for breaking out the relevant parts.

show_elevation<tab><offset>

If the offset is valid (see below), write the elevation in feet field for the record that occurs at that offset. One

complication is that the elevation fields are optional; if the elevation is not given, write "Elevation is not given".

What about invalid offsets?

 If the offset is not positive, write the error message “Offset is not positive”.

 If the offset is larger than the length of the data file, write the error message “Offset is too large”.

 If the offset is non-negative but does not correspond to the first character on a line of the file that contains a GIS record,

write the error message “Offset is unaligned”.

The only other command is:

quit<tab>

Cease processing the commands file, log the message “Exiting”, close all files and exit the program.

Each command will occur on a line by itself. Lines beginning with a semi-colon character ';' are comments and should be

ignored. Blank lines are possible. The command file is guaranteed to conform to this specification, so you do not need to worry

about error-checking when reading it. See the posted command files for examples.

CS 3114 Data Structures & Algorithms Project 1: File Navigation and Parsing

Version 5.00 This is a purely individual assignment! 5

Sample input and output files will be supplied on the course website.

Under no circumstances may your program store more than one complete GIS record in memory at any given instant,

nor is your program allowed to store a collection of file offsets for the records in the file.

Note the instructions given above imply your main class (the one that implements public static void main()) must be

named GISParser. If you execute your program from within Eclipse, you can still specify command-line parameters; see the

Eclipse for 3114 notes for an example.

Testing

Sample GIS and command files will be supplied on the course website, along with the corresponding correct results. You must

test your solution with each of those samples. There is no guarantee these will cover all the logical cases.

Beyond that, it is your responsibility to design and conduct thorough and sensible tests of your implementation before submitting

it. For that purpose, you may share test input and output files (but absolutely no solution code!!) via the class Forum. You

should not use the Curator for your own testing and debugging purposes. The Curator will only accept a limited number of

submissions by each student, so use them wisely for locking in your grades.

Solutions to this assignment will be graded on CentOS 7, as installed on the rlogin cluster. The evaluation will be performed

using command-line tools only. The Resources page on the course website includes instructions for using command-line tools to

compile and execute Java programs. You should consult those, as well as the course staff when you have questions.

You may develop your solution on Windows or Linux, as you like, and you may use Eclipse or any other IDE you like. But, it is

your responsibility to ensure that you have tested your code with the posted testing/grading code on CentOS 7 using Java 8.

Failure to do that is likely to result in a score of zero on this assignment.

Note this assignment will be autograded, using the supplied testing code, so the comparison tool will complain unless spelling,

punctuation and capitalization are exactly as specified.

Grading Code

The website has a link to a zip file containing tools you can use to test and grade the correctness of your solution. In fact, these

are the same tools that we will use to do the grading of your solution (instead of the Curator’s built-in tools).

gradeJ1.sh bash shell script that runs the grading tools

readme.txt explains how this all works

tools.zip zip file containing:

 GISGenerator.jar Java test data generator tool

 NM_EddyKnown.txt input files used by the generator tool

 NM_EddyUnknown.txt

 LogComparator.jar comparison tool that scores your results

Since this is the exact code that will be used when we grade your solution, it is imperative that you make good use of this code in

your own testing. See the readme.txt file for detailed instructions.

Documentation

You should document your implementation in accordance with the Programming Standards page on the course website. It is

possible that your implementation will be evaluated for documentation, as well as for correctness of results. If so, your

submission will be evaluated by one of the TAs, who will assess a deduction (ideally zero) against your score from the grading

code.

Note that the evaluation of your project may depend substantially on the quality of your code and documentation.

CS 3114 Data Structures & Algorithms Project 1: File Navigation and Parsing

Version 5.00 This is a purely individual assignment! 6

Design Considerations

You should apply good object-oriented design principles in your project. Think through object responsibilities and interactions,

and sketch out your design before you start coding. The most common design shortcomings with an assignment like this are to

identify a too-small set of candidate classes, or to adopt a minimal design in order to reduce coding time. As inspiration, I will

tell you that my solution incorporates 8 distinct classes and 2 enumerated types, all of which play important roles within the

requirements of the assignment, and also in my solution for a future assignment.

Keep in mind that later projects in this course may build on this one. For example, it is likely that in a later project some other

part of the GIS database system will need to actually do something with various fields of the GIS records that are retrieved in this

assignment.

You should consider what possible errors might be encountered, and which ones you should check for. One common example is

the validation of command-line parameters. We will not test your solution with invalid parameters, but in reality it's fairly

common for a user to supply incorrect, or no, parameters. It's simple to test for the existence of files, and log an error message

and exit cleanly if expected files do not exist. As mentioned earlier, a GIS record may not specify a value for every field. In

other cases, but not this assignment, logically invalid values may be supplied; for example, a character string (e.g., "Fred") where

a numeric value is expected. A program that crashes, or even just computes nonsensical results, in such a situation looks very

unprofessional.

Finally, you should be careful about designing your solution to catch exceptions and write useful diagnostics to standard output if

an exception is caught, especially if it cannot be handled internally.

What to Submit

For this assignment, you must submit a zip file containing all the Java source code files for your implementation (i.e., .java

files). Submit only the Java source files. Do not submit Java bytecode (class) files. If you use packages in your implementation

(and that's good practice), your zip file must include the correct directory structure for those packages. That's easy to verify by

running the supplied grading code on the zip file you are planning to submit.

This assignment will be auto-graded under CentOS (which should not matter at all) using Java version 1.8u20 or later, and the

posted testing/grading code. Your submitted zip file will be placed in the appropriate subdirectory with the packaged test code,

and will then be evaluated by running the supplied testing script. We will make no accommodations for submissions that do not

work with that script.

Warning: the requirement here is for a zip file, based on the fact that there is a standard utility for creating zip files on Linux

systems. See "man zip" and "man unzip" for details. We will not accept files in any other format (e.g., tar files, 7-zip'd files,

gzip'd files, jar files, rar files, …). Such submissions will NOT work with the supplied script, and will be discarded when we run

the grading code ourselves.

Instructions, and the appropriate link, for submitting to the Curator are given in the Student Guide at the Curator website:

http://www.cs.vt.edu/curator/.

You will be allowed to submit your solution multiple times, in order to make corrections. Your score will be determined by

testing your last submission. The Curator will not be used to grade your submissions in real time, but you will have already done

the grading using the posted code.

http://www.cs.vt.edu/curator/

CS 3114 Data Structures & Algorithms Project 1: File Navigation and Parsing

Version 5.00 This is a purely individual assignment! 7

Pledge

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course. Specifically,

you must include the following pledge statement at the beginning of the file that contains main():

// On my honor:

//

// - I have not discussed the Java language code in my program with

// anyone other than my instructor or the teaching assistants

// assigned to this course.

//

// - I have not used Java language code obtained from another student,

// or any other unauthorized source, including the Internet, either

// modified or unmodified.

//

// - If any Java language code or documentation used in my program

// was obtained from another source, such as a text book or course

// notes, that has been clearly noted with a proper citation in

// the comments of my program.

//

// - I have not designed this program in such a way as to defeat or

// interfere with the normal operation of the supplied grading code.

//

// <Student's Name>

// <Student's VT email PID>

We reserve the option of assigning a score of zero to any submission that is undocumented or

does not contain this statement.

Change Log

Version Date Change(s)
5.00 Jan 15 Base document

