
AVL Trees

Data Structures & Algorithms

1

CS@VT ©2000-2012 McQuain

Balanced Binary Trees

Binary search trees provide O(log N) search times provided that the nodes are distributed

in a reasonably “balanced” manner. Unfortunately, that is not always the case and

performing a sequence of deletions and insertions can often exacerbate the problem.

When a BST becomes badly unbalanced, the search behavior can degenerate to that of a

sorted linked list, O(N).

There are a number of strategies for dealing with this problem; most involve adding

some sort of restructuring to the insert/delete algorithms.

That can be effective only if the restructuring reduces the average depth of a node from

the root of the BST, and if the cost of the restructuring is, on average, O(log N).

We will examine one such restructuring algorithm…

AVL Trees

Data Structures & Algorithms

2

CS@VT ©2000-2012 McQuain

AVL Trees

AVL tree*: a binary search tree in which the heights of the left and right subtrees of

the root differ by at most 1, and in which the left and right subtrees are

themselves AVL trees.

*G. M. Adelson-Velskii and E. M. Landis, 1962.

Each AVL tree node has an associated balance factor indicating the relative heights of its

subtrees (left-higher, equal, right-higher). Normally, this adds one data element to each

tree node and an enumerated type is used.

How effective is this? The height of an AVL tree with N nodes never exceeds 1.44 log N

and is typically much closer to log N.

AVL Trees

Data Structures & Algorithms

3

CS@VT ©2000-2012 McQuain

Examples

\

\ /

– –

– –

–

\\

– /

/ –

–

This is an AVL tree. . .

. . .and this is not.

AVL Trees

Data Structures & Algorithms

4

CS@VT ©2000-2012 McQuain

Unbalance from Insertion

Consider inserting the value 45 into the AVL tree:
50

25 70

65 75

55 68

30

The result would be unbalanced at the node containing 25:

The unbalance is repaired by applying one of two types of

“rotation” to the unbalanced subtree…

50

25

30

45

AVL Trees

Data Structures & Algorithms

5

CS@VT ©2000-2012 McQuain

Rebalancing via Subtree Restructuring

The subtree rooted at 25 is right-higher.

We restructure the subtree, resulting in a

balanced subtree:

The transformation is relatively simple, requiring

only a few operations, and results in a subtree that

has equal balance.

50

25

30

45

50

30

4525

AVL Trees

Data Structures & Algorithms

6

CS@VT ©2000-2012 McQuain

AVL Insertion Case: right-higher

There are two unbalance cases to consider, each defined by the state of the subtree that

just received a new node. For simplicity, assume for now that the insertion was to the

right subtree (of the subtree).

Let sroot be the root of the newly unbalanced subtree, and suppose that its right subtree

is now right-higher:

In this case, the subtree rooted at right was

previously equally balanced (why?) and the

subtree rooted at sroot was previously right-

higher (why?).

The height labels follow from those observations.

Balance can be restored by “rotating” the values

so that right becomes the subtree root node and

sroot becomes the left child.

\\

\

T1

T2 T3

h

h
h+1

sroot

right

AVL Trees

Data Structures & Algorithms

7

CS@VT ©2000-2012 McQuain

AVL Left Rotation

The manipulation just described is known as a “left rotation” and the result is:

\\

\

T1

T2 T3

h

h
h+1

sroot

right

–

–

T1
T2

T3

Overall

height

of each

subtree

is now

the

same.

right

sroot

That covers the case where the right subtree has become right-higher… the case where

the left subtree has become left-higher is analogous and solved by a right rotation.

AVL Trees

Data Structures & Algorithms

8

CS@VT ©2000-2012 McQuain

AVL Insertion Case: left-higher

Now suppose that the right subtree has become left-higher:

\\

/

T1
h

h-1

or

h

sroot

right

T4

?

T2 T3

right-left

The insertion occurred in the left subtree of

the right subtree of sroot.

In this case, the left subtree of the right

subtree (rooted at right-left) may be either

left-higher or right-higher, but not balanced

(why?).

Surprisingly (perhaps), this case is more

difficult. The unbalance cannot be

removed by performing a single left or

right rotation.

AVL Trees

Data Structures & Algorithms

9

CS@VT ©2000-2012 McQuain

AVL Double Rotation

Applying a single right rotation to the subtree rooted at right produces…

\\

/

h-1

or

h

sroot

right

T4

?

T2 T3

right-left

\\

\

sroot

right

T4

?

T2

T3

right-left

…a subtree rooted at right-left that is now right-higher…

AVL Trees

Data Structures & Algorithms

10

CS@VT ©2000-2012 McQuain

AVL Double Rotation

Now, applying a single left rotation to the subtree rooted at sroot produces…

\\

\

sroot

right

T4

?

T2

T3

right-left

…a balanced subtree.

The case where the left subtree of sroot is right-higher is handled similarly (by a double

rotation).

h

h-1 or h

sroot

–

?
right

T4T3

right-left

?

T1 T2 h

Balance factors here

depend on original

balance factor of

right-left.

AVL Trees

Data Structures & Algorithms

11

CS@VT ©2000-2012 McQuain

Unbalance from Deletion

Deleting a node from an AVL tree can also create an imbalance that must be corrected.

The effects of deletion are potentially more complex than those of insertion.

The basic idea remains the same: delete the node, track changes in balance factors as the

recursion backs out, and apply rotations as needed to restore AVL balance at each node

along the path followed down during the deletion.

However, rebalancing after a deletion may require applying single or double rotations at

more than one point along that path.

As usual, there are cases…

Here, we will make the following assumptions:

- the lowest imbalance occurs at the node root (a subtree root)

- the deletion occurred in the left subtree of root

AVL Trees

Data Structures & Algorithms

12

CS@VT ©2000-2012 McQuain

AVL Deletion Case: right-higher

Suppose we have the subtree on the left prior to deletion and that on the right after

deletion:

\

\

1

2

sroot

right

h

3

h-1

h

\\

\

1

2

sroot

right

h-1 3

h-1

h

–

–

2

right

sroot

3

h-1 h

1

h-1

Then a single left rotation

at sroot will rebalance the

subtree.

Note: "right-higher"

refers to the balance

factor of the root of the

right subtree (labeled

right here).

AVL Trees

Data Structures & Algorithms

13

CS@VT ©2000-2012 McQuain

AVL Deletion Case: equal-height

Suppose the right subtree root has balance factor equal-height:

\

–

1

sroot

right

h

3

h

\

/

2

right

sroot

3

h

h

1

h-1

Again, a single left

rotation at root will

rebalance the subtree.

2

h

The difference is the resulting balance factor at the old subtree root node, sroot, which

depends upon the original balance factor of the node right.

AVL Trees

Data Structures & Algorithms

14

CS@VT ©2000-2012 McQuain

AVL Deletion Case: left-higher

If the right subtree root was left-higher, we have the following situation:

As you should expect, the resulting

imbalance can be cured by first applying a

right rotation at the node right, and then

applying a left rotation at the node sroot.

Deleting a node from the left subtree of

sroot now will cause sroot to become

double right higher.

However, we must be careful because the balance factors will depend upon the original

balance factor at the node labeled right-left…

h

\

/

1

sroot

right

4

h-1

h-1 or h-2?

?

2 3

right-left

AVL Trees

Data Structures & Algorithms

15

CS@VT ©2000-2012 McQuain

AVL Deletion Case: left-higher, left-higher

If the right-left subtree root was also left-higher, we obtain:

h-1

\\

/

1

sroot

right

4

h-1

/

2 3

right-left

h-1

h-2

h-1

–

–

1

right-left

sroot \ right

h-1

2

h-2

3

h-1

4

AVL Trees

Data Structures & Algorithms

16

CS@VT ©2000-2012 McQuain

AVL Deletion Case: left-higher, right-higher

If the right-left subtree root was right-higher, we obtain:

h-1

\\

/

1

sroot

right

4

h-1

\

2 3

right-left

h-2

h-1 h-1

–

/

1

right-left

sroot – right

h-2

2

h-1

3

h-1

4

And, finally, if the right-left subtree root was equal-height, we'd obtain a tree where all

three of the labeled nodes have equal-height.

AVL Trees

Data Structures & Algorithms

17

CS@VT ©2000-2012 McQuain

AVL Deletion Cases: Summary

We have considered a number of distinct deletion cases, assuming that the deletion

occurred in the left subtree of the imbalanced node.

There are an equal number of entirely similar, symmetric cases for the assumption the

deletion was in the right subtree of the imbalanced node.

Drawing diagrams helps…

This discussion also has some logical implications for how insertion is handled in an

AVL tree. The determination of the balance factors in the tree, following the rotations,

involves similar logic in both cases.

AVL Trees

Data Structures & Algorithms

18

CS@VT ©2000-2012 McQuain

Implementation Ideas

public enum BFactor {DBLLEFTHI, LEFTHI, EQUALHT,

RIGHTHI, DBLRIGHTHI};

An enumerated type is useful for dealing with the balance factors:

Enumerated type values can be compared with the == operator:

. . .

if (Grew == BFactor.RIGHTHI) {

. . .

Enumerated type values can also be used as cases for a switch statement.

AVL Trees

Data Structures & Algorithms

19

CS@VT ©2000-2012 McQuain

Implementation Ideas

private static class AVLNode {

. . .

BFactor balance;

T element;

AVLNode left;

AVLNode right;

}

AVL nodes add a representation for the nodes's balance:

Because we need pointers to AVL nodes, we do not derive AVLNode from BSTNode.

That can be made to work, but it is ugly and inefficient.

AVL Trees

Data Structures & Algorithms

20

CS@VT ©2000-2012 McQuain

Implementation Ideas

public class AVLTree<T extends Comparable<? super T>> {

. . .

AVLNode root;

. . .

// single rotations

private AVLNode rotateRight(AVLNode sroot) {. . .}

private AVLNode rotateLeft(AVLNode sroot) {. . .}

// double rotations

private AVLNode rotateRightLeft(AVLNode sroot) {. . .}

private AVLNode rotateLeftRight(AVLNode sroot) {. . .}

// rebalance managers

private AVLNode rightBalance(AVLNode sroot) {. . .}

private AVLNode leftBalance(AVLNode sroot) {. . .}

. . .

AVL Trees

Data Structures & Algorithms

21

CS@VT ©2000-2012 McQuain

Complexity

Let Nh be the minimum number of nodes an AVL tree with h levels can have.

Then:
𝑁1 = 1, 𝑁2 = 2

𝑁ℎ = 𝑁ℎ−1 +𝑁ℎ−2 + 1, for 𝑁 > 2

This can be solved to show that:

2 1 5 2 1 5
1 1 1

2 25 5

h h

hN
       

             
      

And, from this:

1 5

2

log (1) 1.44log()h hh N N


  

