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Balanced Binary Trees

Binary search trees provide O(log N) search times provided that the nodes are distributed 

in a reasonably “balanced” manner.  Unfortunately, that is not always the case and 

performing a sequence of deletions and insertions can often exacerbate the problem.

When a BST becomes badly unbalanced, the search behavior can degenerate to that of a 

sorted linked list, O(N).

There are a number of strategies for dealing with this problem; most involve adding 

some sort of restructuring to the insert/delete algorithms.

That can be effective only if the restructuring reduces the average depth of a node from 

the root of the BST, and if the cost of the restructuring is, on average, O(log N).

We will examine one such restructuring algorithm…
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AVL Trees

AVL tree*: a binary search tree in which the heights of the left and right subtrees of 

the root differ by at most 1, and in which the left and right subtrees are 

themselves AVL trees.

*G. M. Adelson-Velskii and E. M. Landis, 1962.

Each AVL tree node has an associated balance factor indicating the relative heights of its 

subtrees (left-higher, equal, right-higher).  Normally, this adds one data element to each 

tree node and an enumerated type is used.

How effective is this?  The height of an AVL tree with N nodes never exceeds 1.44 log N 

and is typically much closer to log N.
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Examples
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This is an AVL tree. . .

. . .and this is not.
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Unbalance from Insertion

Consider inserting the value 45 into the AVL tree:
50

25 70

65 75

55 68

30

The result would be unbalanced at the node containing 25:

The unbalance is repaired by applying one of two types of 

“rotation” to the unbalanced subtree…

50

25

30

45
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Rebalancing via Subtree Restructuring

The subtree rooted at 25 is right-higher. 

We restructure the subtree, resulting in a 

balanced subtree:

The transformation is relatively simple, requiring 

only a few operations, and results in a subtree that 

has equal balance.

50

25

30

45

50

30

4525
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AVL Insertion Case: right-higher

There are two unbalance cases to consider, each defined by the state of the subtree that 

just received a new node.  For simplicity, assume for now that the insertion was to the 

right subtree (of the subtree).

Let sroot be the root of the newly unbalanced subtree, and suppose that its right subtree 

is now right-higher:

In this case, the subtree rooted at right was 

previously equally balanced (why?)  and the 

subtree rooted at sroot was previously right-

higher (why?).

The height labels follow from those observations.

Balance can be restored by “rotating” the values 

so that right becomes the subtree root node and 

sroot becomes the left child.

\\

\

T1

T2 T3

h

h
h+1

sroot

right
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AVL Left Rotation

The manipulation just described is known as a “left rotation” and the result is:

\\

\

T1

T2 T3

h

h
h+1

sroot

right

–

–

T1
T2

T3

Overall 

height 

of each 

subtree 

is now 

the 

same.

right

sroot

That covers the case where the right subtree has become right-higher… the case where 

the left subtree has become left-higher is analogous and solved by a right rotation.
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AVL Insertion Case: left-higher

Now suppose that the right subtree has become left-higher:

\\

/

T1
h

h-1

or

h

sroot

right

T4

?

T2 T3

right-left

The insertion occurred in the left subtree of 

the right subtree of sroot.

In this case, the left subtree of the right 

subtree (rooted at right-left) may be either 

left-higher or right-higher, but not balanced 

(why?).

Surprisingly (perhaps), this case is more 

difficult.  The unbalance cannot be 

removed by performing a single left or 

right rotation.
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AVL Double Rotation

Applying a single right rotation to the subtree rooted at right produces…

\\

/

h-1

or

h

sroot

right

T4

?

T2 T3

right-left

\\

\

sroot

right

T4

?

T2

T3

right-left

…a subtree rooted at right-left that is now right-higher…
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AVL Double Rotation

Now, applying a single left rotation to the subtree rooted at sroot produces…

\\

\

sroot

right

T4

?

T2

T3

right-left

…a balanced subtree.

The case where the left subtree of sroot is right-higher is handled similarly (by a double 

rotation).

h

h-1 or h

sroot

–

?
right

T4T3

right-left

?

T1 T2 h

Balance factors here 

depend on original

balance factor of 

right-left.
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Unbalance from Deletion

Deleting a node from an AVL tree can also create an imbalance that must be corrected.

The effects of deletion are potentially more complex than those of insertion.

The basic idea remains the same:  delete the node, track changes in balance factors as the 

recursion backs out, and apply rotations as needed to restore AVL balance at each node 

along the path followed down during the deletion.

However, rebalancing after a deletion may require applying single or double rotations at 

more than one point along that path.

As usual, there are cases…

Here, we will make the following assumptions:

- the lowest imbalance occurs at the node root (a subtree root)

- the deletion occurred in the left subtree of root
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AVL Deletion Case: right-higher

Suppose we have the subtree on the left prior to deletion and that on the right after 

deletion:

\

\

1

2

sroot

right

h

3

h-1

h

\\

\

1

2

sroot

right

h-1 3

h-1

h

–

–

2

right

sroot

3

h-1 h

1

h-1

Then a single left rotation 

at sroot will rebalance the 

subtree.

Note: "right-higher" 

refers to the balance 

factor of the root of the 

right subtree (labeled 

right here).
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AVL Deletion Case: equal-height

Suppose the right subtree root has balance factor equal-height:

\

–

1

sroot

right

h

3

h

\

/

2

right

sroot

3

h

h

1

h-1

Again, a single left 

rotation at root will 

rebalance the subtree.

2

h

The difference is the resulting balance factor at the old subtree root node, sroot, which 

depends upon the original balance factor of the node right.
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AVL Deletion Case: left-higher

If the right subtree root was left-higher, we have the following situation:

As you should expect, the resulting 

imbalance can be cured by first applying a 

right rotation at the node right, and then 

applying a left rotation at the node sroot.

Deleting a node from the left subtree of 

sroot now will cause sroot to become 

double right higher.

However, we must be careful because the balance factors will depend upon the original 

balance factor at the node labeled right-left…

h

\

/

1

sroot

right

4

h-1

h-1 or h-2?

?

2 3

right-left
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AVL Deletion Case: left-higher, left-higher

If the right-left subtree root was also left-higher, we obtain:

h-1

\\

/

1

sroot

right

4

h-1

/

2 3

right-left

h-1

h-2

h-1

–

–

1

right-left

sroot \ right

h-1

2

h-2

3

h-1

4
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AVL Deletion Case: left-higher, right-higher

If the right-left subtree root was right-higher, we obtain:

h-1

\\

/

1

sroot

right

4

h-1

\

2 3

right-left

h-2

h-1 h-1

–

/

1

right-left

sroot – right

h-2

2

h-1

3

h-1

4

And, finally, if the right-left subtree root was equal-height, we'd obtain a tree where all 

three of the labeled nodes have equal-height.
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AVL Deletion Cases: Summary

We have considered a number of distinct deletion cases, assuming that the deletion 

occurred in the left subtree of the imbalanced node.

There are an equal number of entirely similar, symmetric cases for the assumption the 

deletion was in the right subtree of the imbalanced node.

Drawing diagrams helps…

This discussion also has some logical implications for how insertion is handled in an 

AVL tree.  The determination of the balance factors in the tree, following the rotations, 

involves similar logic in both cases.
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Implementation Ideas

public enum BFactor {DBLLEFTHI, LEFTHI, EQUALHT, 

RIGHTHI, DBLRIGHTHI};

An enumerated type is useful for dealing with the balance factors:

Enumerated type values can be compared with the == operator:

. . .

if ( Grew == BFactor.RIGHTHI ) {

. . .

Enumerated type values can also be used as cases for a switch statement.
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Implementation Ideas

private static class AVLNode {

. . .

BFactor balance;

T         element;

AVLNode left;

AVLNode right;

}

AVL nodes add a representation for the nodes's balance:

Because we need pointers to AVL nodes, we do not derive AVLNode from BSTNode.

That can be made to work, but it is ugly and inefficient.
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Implementation Ideas

public class AVLTree<T extends Comparable<? super T>> {

. . .

AVLNode root;

. . .

// single rotations

private AVLNode rotateRight( AVLNode sroot ) {. . .}

private AVLNode rotateLeft( AVLNode sroot ) {. . .}

// double rotations

private AVLNode rotateRightLeft( AVLNode sroot ) {. . .}

private AVLNode rotateLeftRight( AVLNode sroot ) {. . .}

// rebalance managers

private AVLNode rightBalance( AVLNode sroot ) {. . .}

private AVLNode leftBalance( AVLNode sroot) {. . .}

. . .
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Complexity

Let Nh be the minimum number of nodes an AVL tree with h levels can have.

Then:
𝑁1 = 1, 𝑁2 = 2

𝑁ℎ = 𝑁ℎ−1 +𝑁ℎ−2 + 1, for 𝑁 > 2

This can be solved to show that:

2 1 5 2 1 5
1 1 1

2 25 5

h h

hN
       

             
      

And, from this:

1 5

2

log ( 1) 1.44log( )h hh N N


  


