
CS 3114 Data Structures and Algorithms MiniTest 4

A 1

READ THIS NOW!

 Print your name in the space provided below.

 There are 4 short-answer questions, priced as marked. The maximum score is 50.

 Most questions require analyzing a scenario, drawing a conclusion, and justifying that conclusion. Credit will be

awarded for making statements that are both true and relevant to the question. Do not feel obligated to fill all the

available space when answering the questions.

 This examination is closed book and closed notes.

 No calculators, cell phones, or other computing devices may be used. The use of any such device will be

interpreted as an indication that you are finished with the test and your test form will be collected immediately.

 Until solutions are posted, or gone over in class, you may not discuss this examination with any student who has

not taken it.

 Failure to adhere to any of these restrictions is an Honor Code violation.

 When you have finished, sign the pledge at the bottom of this page and turn in the test.

Name (Last, First) Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 3114 Data Structures and Algorithms MiniTest 4

A 2

xkcd.com

In the 60s, Marvin Minsky assigned a couple of
undergrads to spend the summer programming a
computer to use a camera to identify objects in a scene.

He figured they'd have the problem solved by the end of
the summer.

Half a century later, we're still working on it

CS 3114 Data Structures and Algorithms MiniTest 4

A 3

1. An AVL tree uses rotations to restructure part of the tree following some insertion operations. (This is also true for

some deletion operations, but that's not relevant to the questions being asked.)

Suppose that a new value is inserted to an AVL tree, and as a result a single rotation operation is performed. Suppose

the insertion added a new node to the right subtree of a node N, and the subsequent rotation was performed at that

node, N.

a) [5 points] Is the rotation performed before the new node is added to the tree, or after the new node is added to the

tree?

After… until we've determined how the insertion of the new node affects the balance

factors in its ancestor nodes (path back to the root), we don't have enough information to

determine whether any rebalancing will be needed. (Technically, we could determine the new

balance factors for the ancestor nodes before physically inserting the new leaf, but that

would require keeping track of where the new leaf should wind up after any necessary

rotations were performed; there's no gain in doing that.)

b) [5 points] What relevant fact must have been true about N's two subtrees immediately before the new node was

inserted?

The right subtree of N must have had exactly one more level than the left subtree of N.

We know the insertion caused a rotation due to a bad balance factor at N, and the insertion

was performed in the right subtree of N… therefore, the right subtree of N must have had

two more levels (than the left subtree) after the insertion was performed. And, inserting a

leaf cannot increase the number of levels in the subtree by more than 1.

c) [5 points] Continuing from the situation described in part b), what relevant fact must have been true about N's

two subtrees immediately after the new node was inserted, but before any rotations were performed?

The right subtree must have had two exactly more levels than the left subtree.

See comments for part b).

d) [5 points] Let's suppose that, before the insertion was performed, N was the left child of its parent node, P. After

the single rotation has been performed, the node N will have been shifted within the tree, and a different node will

now be the left child of P.

From P's perspective, how will the left subtree P had before the insertion compare to the left subtree it has after

the insertion and rotation?

The key point is the entire reason we perform the rotations: after the insertion and

rotation, P's left subtree will have exactly the same number of levels as it had before the

insertion, so the rotation prevented the subtree from getting taller.

Lesser points:

 P's left child after the rotation was the right child of N before the insertion

 P's left subtree contains one more node than before the insertion

CS 3114 Data Structures and Algorithms MiniTest 4

A 4

2. [10 points] In an AVL tree, rebalancing after an insertion never requires more than two single rotations (if we think of

a double rotation as a sequence of two single rotations). Since the cost of a single rotation is Θ(1), the cost of

rebalancing after an insertion only adds a small constant cost to the insertion (compared to a plain BST).

On the other hand, rebalancing after a deletion may require a single rotation at (essentially) every level, all the way to

the root node of the tree. Even so, the cost of a deletion, including all the rebalancing, is still Θ(log N). Explain why.

The cost of all those single rotations cannot be more than a constant times the number of levels

in the AVL tree.

An AVL tree with N nodes is guaranteed to have Θ(log N) levels.

Therefore, the total cost of the deletion is no worse than the cost of going to the bottom

level, plus the cost of the physical deletion of a node plus the cost of backing out and

restructuring, which is Θ(log N + 1 + log N) = Θ(log N).

A complete answer will explain the complexity result entirely.

3. [10 points] How does the worst-case cost of a single insertion to a splay tree compare to the worst-case cost of a

single insertion to an AVL tree, if we (fairly) take into account the cost of the rotation operation(s) that would be

required in each case? Be precise.

In an AVL tree, after inserting a new node, we never need more than two single rotations to

rebalance. Since the number of levels for an AVL tree with N nodes is Θ(log N), the cost of

the insertion is no worse than Θ(log N).

For a splay tree with N nodes, the number of levels is only guaranteed to be O(N). However,

the splay tree will perform NO rotations after an insertion. So, if the found node is in the

lowest level of the tree, the cost of the insertion, which involves NO rebalancing, could be as

large as Θ(N).

A common error was to say the splay tree will perform rotations after an insertion (or a

deletion).

CS 3114 Data Structures and Algorithms MiniTest 4

A 5

4. [10 points] Suppose you are building an application that will involve performing a large number of searches on a

huge collection of data records, stored in a file on disk. One type of search will involve a key that is a non-negative

integer, an ID number. Each record is guaranteed to have a different value for that key. You have decided you will

handle these searches by building an index in memory, and the index will use some sort of binary search tree for its

physical structure. You have chosen a binary search tree, instead of a hash table, because the application will also

involve a substantial number of insertions and deletions.

Research has convinced you that when your application is in use, searches will exhibit high temporal locality,

involving a rather small percentage of the data records. What kind of binary search tree should you adopt for your

application? Why?

If we expect high temporal locality with respect to a small subset of the data records, then we

expect something like the 80/20 Rule to apply to searching.

In that case, we should prefer a splay tree to an AVL tree, since we expect the splay tree will

keep the most-searched-for records in the upper levels of the tree, and give us lower average

search cost.

The AVL guarantees an excellent Θ(log N) bound on the cost of every search, but it does not

take advantage of the presence of temporal locality.

And, of course, we would prefer that to a plain BST, which doesn't even give a good bound on

the number of levels.

A complete answer would not only explain why the splay tree would be good, but why the obvious

alternative would not be as good.

