
CS 3114 Data Structures and Algorithms MiniTest 2

B 1

READ THIS NOW!

 Print your name in the space provided below.

 There are 4 short-answer questions, priced as marked. The maximum score is 50.

 Most questions require analyzing a scenario, drawing a conclusion, and justifying that conclusion. Credit will be

awarded for making statements that are both true and relevant to the question. Do not feel obligated to fill all the

available space when answering the questions.

 This examination is closed book and closed notes.

 No calculators, cell phones, or other computing devices may be used. The use of any such device will be

interpreted as an indication that you are finished with the test and your test form will be collected immediately.

 Until solutions are posted, or gone over in class, you may not discuss this examination with any student who has

not taken it.

 Failure to adhere to any of these restrictions is an Honor Code violation.

 When you have finished, sign the pledge at the bottom of this page and turn in the test.

Name (Last, First) Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 3114 Data Structures and Algorithms MiniTest 2

B 2

xkcd.com

In the 60s, Marvin Minsky assigned a couple of
undergrads to spend the summer programming a
computer to use a camera to identify objects in a scene.

He figured they'd have the problem solved by the end of
the summer.

Half a century later, we're still working on it

CS 3114 Data Structures and Algorithms MiniTest 2

B 3

1. [12 points] Using the rules from the notes, derive and simplify an exact-count complexity function for the following

algorithm:

metric = 0; // 1

for (pos = 1; pos < N; pos++) { // 1 before, 2 per pass, 1 to exit loop

 curr = values[pos]; // 2

 metric = metric * pos + curr; // 3

 if (curr % 2 == 1) { // 2

 metric = metric + curr; // 2

 }

 metric = metric / pos; // 2

}

1

1

1

1

() 1 1 2 2 3 2 2 2 1

13 3

13 1 3

13 10

N

pos

N

pos

T N

N

N

Common errors:

 upper bound on summation as N rather than N-1

 miscounting cost of a loop pass (13); most errors were off by 1

CS 3114 Data Structures and Algorithms MiniTest 2

B 4

2. [12 points] The complexity function for an algorithm is: 2 2() 5 log 3T N N N N

What is the simplest function ()f N such that the algorithm is (())f N ? Prove your answer is correct. You may

use any of the theorems covered in the notes.

T(N) is Θ(f(N)) . Unfortunately, this doesn't follow from any Theorem except the limit

theorem:

2 2 2

2N →∞ N →∞ N →∞

2

N →∞

5Nlog N+3N 5log N 10logN /Nln2
lim = lim +3 = lim +3

N N 1

10 / Nln 2
= lim +3 = 3

ln2

Common issues:

 working limit out incorrectly

 not showing details of l'Hopital's Rule applications in working out limit

 setting up wrong limit and then working it out incorrectly

3. [10 points] The complexity function for an algorithm is 2()N . Given an input of size N = 220, the running time on a

certain computer is about 30 seconds. Haskell Hoo IV offers the opinion that if we doubled the size of the input, the

same algorithm, on the same computer, would take about 120 seconds to execute. Is this reasonable? Explain.

If the complexity is 2Θ(N) , then doubling the size of the input is expected to increase the

number of operations by a factor of 4. More precisely, the number of operations would be

expected to be about
2 22N 4N .

Or, using the specific input sizes, the ratio of the number of operations is reasonably estimated

by T(2*220) / T(220). This yields:

2
2120 21 42

2

20 20 2 40
20

2(2 *2) (2) 2
2 4

(2) (2) 22

T T

T T

So, we'd expect the running time to be about four times the original time, or about 120

seconds. Haskell's estimate is reasonable.

The most common issue was to not show calculations the precisely supported a conclusion.

CS 3114 Data Structures and Algorithms MiniTest 2

B 5

4. [16 points] An algorithm is, in the average case, (log)N N . For each part, circle a choice to indicate whether the

given property definitely applies to the algorithm, definitely does not apply to the algorithm, or may or may not apply

(depending on information not given). No justification is required.

a) in the best case, ()N definitely yes definitely no maybe yes, maybe no

b) in the average case, 2()N definitely yes definitely no maybe yes, maybe no

c) in the worst case, ()N definitely yes definitely no maybe yes, maybe no

d) in the worst case, (log)N N definitely yes definitely no maybe yes, maybe no

e) in the best case, (log)N definitely yes definitely no maybe yes, maybe no

f) in the average case, (log)N N definitely yes definitely no maybe yes, maybe no

g) in the worst case, (1) definitely yes definitely no maybe yes, maybe no

h) in the best case, (log)N definitely yes definitely no maybe yes, maybe no

