
CS 3114 Data Structures and Algorithms MiniTest 2 

A 1 

 
 

 
 
 
 

READ THIS NOW! 
 

 

 Print your name in the space provided below.  

 There are 3 short-answer questions, priced as marked.  The maximum score is 50. 

 Most questions require analyzing a scenario, drawing a conclusion, and justifying that conclusion.  Credit will be 

awarded for making statements that are both true and relevant to the question.  Do not feel obligated to fill all the 

available space when answering the questions. 

 This examination is closed book and closed notes. 

 No calculators, cell phones, or other computing devices may be used.  The use of any such device will be 

interpreted as an indication that you are finished with the test and your test form will be collected immediately. 

 Until solutions are posted, or gone over in class, you may not discuss this examination with any student who has 

not taken it.   

 Failure to adhere to any of these restrictions is an Honor Code violation. 

 When you have finished, sign the pledge at the bottom of this page and turn in the test. 

 

 
 
 
 
 
 
 
 
 
 

Name (Last, First)   Solution        

 printed 
 

Pledge:  On my honor, I have neither given nor received unauthorized aid on this examination. 
 
 
 
 

            

 signed 
  



CS 3114 Data Structures and Algorithms MiniTest 2 

 

A 2 

 
xkcd.com 

  

In the 60s, Marvin Minsky assigned a couple of 
undergrads to spend the summer programming a 
computer to use a camera to identify objects in a scene.  
 
He figured they'd have the problem solved by the end of 
the summer.  
 
Half a century later, we're still working on it 



CS 3114 Data Structures and Algorithms MiniTest 2 

 

A 3 

1. Suppose that we insert 100 elements into a previously empty hash table, using an array of dimension 500, and that the 

hash function maps exactly 7 of those 100 records to slot 42 of the table.   

 

a) [10 points] Suppose that the hash table resolves collisions by linear probing.  If we now perform a search for one 

of those 7 records, what is the maximum number of record comparisons that might be required?  Explain. 

 

100. 

 

How?  We don't know many collisions occur during the insertions, but it is possible that 

every element, except the first one, collides with another element that was previously 

inserted.  In that case, it's possible that the only element that's actually in its home slot is 

the first one that was inserted. 

 

 

b) [10 points] Suppose that the hash table resolves collisions by using a chain, consisting of a singly-linked list, in 

each tables slot.  If we now perform a search for one of those 7 records, what is the maximum number of record 

comparisons that might be required?  Explain. 

 

7. 

 

We know that those 7 records are the only ones that hash directly to slot 42, and since 

we're using chaining, no other records get put into slot 42 by probing, so slot 42 will contain 

exactly those 7 records. 

 

 

 

 

  

 

2. [10 points] If we make the array for a hash table too small, we may have to rebuild the hash table using a larger array.  

Could the rebuilding process be made more efficient if along with each record inserted to the hash table, we also stored 

the index of the record's home slot?  Explain. 

 

Well, no.   

 

If we change the table size, we need to mod the record's hash value by the new table size to 

determine the records's new home slot. 

 

Simply knowing what the home slot index was gives us no way to compute the original hash value. 
 

  



CS 3114 Data Structures and Algorithms MiniTest 2 

 

A 4 

3. Suppose that we are designing a hash table to store thousands of GIS records, using the feature name as the key.  For 

simplicity, we will assume that any duplicate feature names have been eliminated before we hash the keys.   We have 

decided on a table size that is about 1.5 times the number of records that wind up being inserted to the table.  We have 

also chosen a reputable hash function for handling keys which are strings.  We have also settled on using linear 

probing to resolve collisions. 

 

Unfortunately, in testing we discover that the number of primary collisions is unacceptable.  (A primary collision 

occurs when we get the same home slot index by modding the hash value by the table size.) 

 

Which of the following ideas, if any, has the potential to reduce the number of primary collisions?  Explain.  

 

a) [10 points] Choosing a larger table size. 

 

Yes.  Let's say the old table size was N, and the new table size is M. 

 

A primary collision would have occurred in the old table when we have two records, say A 

and B, such that H(A) % N == H(B) % N.   

 

Now, if H(A) == H(B), then modding by a different table  size will make no difference; A 

and B will still collide (although probably in a different slot than before). 

 

On the other hand, if H(A) != H(B), then it's likely A will now map to a different home slot 

than B, avoiding a primary collision. 

 

 

 

 

 

 

 

b) [10 points] Changing the collision resolution strategy. 

 

No. 

 

The collision resolution strategy doesn't even come into play until a collision has occurred. 
 

 

 

 


