
CS 3114 Data Structures and Algorithms Homework 2: Hashing

You are permitted to work in pairs for this assignment! 1

You may work in pairs for this assignment. If you choose to work with a partner, make sure only one of you submits a

solution, and you paste a copy of the Partners Template that contains the names and PIDs of both students at the beginning

of the file you submit.

You will submit your solution to this assignment to the Curator System (as HW02). Your solution must be either a plain text

file (e.g., NotePad++) or a typed MS Word document; submissions in other formats will not be graded.

Partial credit will only be given if you show relevant work.

1. Consider a hash table consisting of M = 11 slots, and suppose nonnegative integer key values are hashed into the table

using the hash function h1():

public static int h1(int key) {

 int x = (key + 11) * (key + 13);

 x = x << 4;

 x = x + key;

 return x;

}

a) [27 points] Suppose that collisions are resolved by using quadratic probing, with the probe function:

 2 / 2k k

 The integer key values listed below are to be inserted, in the order given. Show the home slot (the slot to which

the key hashes, before any probing), the probe sequence (if any) for each key, and the final contents of the hash

table after the following key values have been inserted in the given order:

Key

Value

Home

Slot
Probe Sequence

43

23

15

27

31

14

37

21

29

Final Hash Table:

Slot 0 1 2 3 4 5 6 7 8 9 10

Contents

CS 3114 Data Structures and Algorithms Homework 2: Hashing

You are permitted to work in pairs for this assignment! 2

b) [27 points] Suppose that collisions are resolved by using double hashing (see the course notes), with the secondary

hash function Reverse(key), which reverses the digits of the key and returns that value; for example,

G(7823) = Reverse(7823) = 3287.

 The integer key values listed below are to be inserted, in the order given. Show the home slot (the slot to which

the key hashes, before any probing), the probe sequence (if any) for each key, and the final contents of the hash

table after the following key values have been inserted in the given order:

Key

Value

Home

Slot
Probe Sequence

43

23

15

27

31

14

37

21

29

Final Hash Table:

Slot 0 1 2 3 4 5 6 7 8 9 10

Contents

2. A hash table is being implemented, using double hashing to resolve collisions. We already have our primary hash

function, H(), to hash the key value, and we have decided on a table size of 997, expecting to store no more than about

500 elements in the table.

Haskell Hoo proposes to make double hashing more efficient by adopting the following scheme. Rather than use a

second hash function, which would require another function evaluation, Haskell proposes that we just calculate the step

distance for probing this way:

step_distance = 997 - home_slot_index

a) [12 points] One potential problem with double hashing is that it might only access a few table slots before

repeating itself. Would Haskell's scheme avoid that difficulty? Explain. (There may be other difficulties with

this idea, but we are not considering them here.)

b) [12 points] In any case, no matter what conclusions you reached in part a), there is a fundamental, fatal flaw in

Haskell's scheme for double hashing that has nothing to do with the issue considered in part b). Explain.

CS 3114 Data Structures and Algorithms Homework 2: Hashing

You are permitted to work in pairs for this assignment! 3

As a second alternative, Haskell proposes computing the probe step distance for double hashing by reusing the result

from the original hash function, instead of having to evaluate a second function. Specifically, he proposes that we

compute the step distance for probing this way:

step_distance = 17 + H(key)

c) [12 points] Would Haskell's second scheme avoid the difficulty considered in part a)? Explain. (There may be

other difficulties with this idea, but we are not considering them here.)

d) [10 points] Would Haskell's second scheme avoid the difficulty you identified in part b)?

