
C Strings

Computer Organization

1

CS@VT ©2005-2013 McQuain

String Representation in C

char Word[7]  = "foobar";

C treats char arrays as a special case in a number of ways.

If storing a character string (to use as a unit), you must ensure that a special character, the 
string terminator '\0' is stored in the first unused cell.

Failure to understand and abide by this is a frequent source of errors.

There is no special type for (character) strings in C; rather, char arrays are used.

W
o
r
d
[
0
]

W
o
r
d
[
1
]

W
o
r
d
[
2
]

W
o
r
d
[
3
]

W
o
r
d
[
4
]

W
o
r
d
[
5
]

W
o
r
d
[
6
]

'f' 'o' 'o' 'b' 'a' 'r' '\0'



C Strings

Computer Organization

2

CS@VT ©2005-2013 McQuain

Some Historical Perspective

There's an interesting recent column on the costs and consequences of the decision to use 

null-terminated arrays to represent strings in C (and other languages influenced by the 

design of C):

http://queue.acm.org/detail.cfm?id=2010365

Whatever perspective we take on the original decision, we must deal with it.



C Strings

Computer Organization

3

CS@VT ©2005-2013 McQuain

Issues with String Termination

char Word[7]  = "foobar";

printf("%s", Word);             // writes "foobar"

Otherwise, learn to be careful:

When a char array is initialized at the point of declaration, a string terminator is added by 

the compiler (as long as you provide sufficient room):

int main() {

char Word[7] = "foobar";

printf("%s\n", Word);

char Term[6] = "foobar";

printf("%s\n", Term);

char Hmmm[6] = {'f', 'o', 'o', 'b', 'a', 'r'};

printf("%s\n", Hmmm);

char Hooo[7] = {'f', 'o', 'o', 'b', 'a', 'r'};

printf("%s\n", Hooo);

return 0;

}

foobar

foobar

foobarfoobar

foobar



C Strings

Computer Organization

4

CS@VT ©2005-2013 McQuain

Stack Layout

+28   0

27   r

26   a

25   b

+24   o

23   o

22   f     Term

21   r

+20   a

19   b

18   o

17   o

+16   f     Hmmm

. . .

. . .

15    0

14   r

13   a

+12   b

11   o

10   o

9   f     Word

+ 8   0

7   r

6   a

5   b

+ 4   o

3   o

2   f     Hooo

1   0

esp

This is only one possible stack layout for the data… nothing is guaranteed aside from the 
fact that storage for an array is always allocated contiguously.



C Strings

Computer Organization

5

CS@VT ©2005-2013 McQuain

Another Example

VERY careful:

int main() {

char Term[6] = "foobar";

printf("%s\n", Term);

return 0;

}

foobarDI"

Note:  YMMV with the output… this will very possibly not be the same for you.

The effect of errors like this is difficult to predict; you must learn to avoid them.

foobar



C Strings

Computer Organization

6

CS@VT ©2005-2013 McQuain

string.h:  Memory and String Functions

The C Standard Library includes a number of functions that support operations on memory 

and strings, including:

Length:
size_t strlen(const char* s1);

Copying:
size_t memcpy(void* restrict s1, const void* restrict s2, size_t n);

char*  strcpy(char* restrict s1, const char* restrict s2);

char* strncpy(char* restrict s1,const char* restrict s2, size_t n);

Comparing:
int memcmp(const void* s1, const void* s2, size_t n);

int strcmp(const char* s1, const char* s2);

int strncmp(const char* s1, const char* s2, size_t n);

Concatenating:
char* strcat(char* restrict s1, const char* restrict s2);

char* strncat(char* restrict s1, const char* restrict s2, size_t n);



C Strings

Computer Organization

7

CS@VT ©2005-2013 McQuain

string.h:  Copy Functions

The C Standard Library includes a number of functions that support operations on memory 

and strings, including:

Copying:

size_t memcpy(void* restrict s1, const void* restrict s2,

size_t n);

Copies n characters from the object pointed to by s2 into the object pointed to 

by s1. If copying takes place between objects that overlap, the behavior

is undefined.  Returns the value of s1.

char* strcpy(char* restrict s1, const char* restrict s2);

Copies the string pointed to by s2 (including the terminating null character) into 

the array pointed to by s1. If copying takes place between objects that overlap, 
the behavior is undefined.  Returns the value of s1.



C Strings

Computer Organization

8

CS@VT ©2005-2013 McQuain

C String Library Hazards

The memcpy() and strcpy() functions illustrate classic hazards of the C library.

If the target of the parameter s1 to memcpy() is smaller than n bytes, then memcpy()

will attempt to write data past the end of the target, likely resulting in a logic error and 
possibly a runtime error.  A similar issue arises with the target of s2.

The same issue arises with strcpy(), but strcpy() doesn't even take a parameter 

specifying the maximum number of bytes to be copied, so there is no way for strcpy() to 

even attempt to enforce any safety measures.

Worse, if the target of the parameter s1 to strcpy() is not properly 0-terminated, then the 

strcpy() function will continue copying until a 0-byte is encountered, or until a runtime 

error occurs.  Either way, the effect will not be good.



C Strings

Computer Organization

9

CS@VT ©2005-2013 McQuain

string.h:  Safer Copying

For safer copying:

char* strncpy(char* restrict s1,const char* restrict s2,

size_t n);

Copies not more than n characters (characters that follow a null character are not 
copied) from the array pointed to by s2 to the array pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters, null 

characters are appended to the copy in the array pointed to by s1, until n characters 

in all have been written.  

Returns the value of s1.

(Of course, this raises the hazard of an unreported truncation if s2 contains more 

than n characters that were to be copied to s1, and null termination of the destination 

is not guaranteed.)



C Strings

Computer Organization

10

CS@VT ©2005-2013 McQuain

string.h: Length Function

Length:

size_t strlen(const char* s);

The strlen() function shall compute the number of bytes in the string to which s

points, not including the terminating null byte.

Hazard:  if there's no terminating null character then strlen() will read until it 

encounters a null byte or a runtime error occurs.



C Strings

Computer Organization

11

CS@VT ©2005-2013 McQuain

string.h: Concatenation Functions

Concatenation:

char* strcat(char* restrict s1, const char* restrict s2);

Appends a copy of the string pointed to by s2 (including the terminating null 

character) to the end of the string pointed to by s1. The initial character of s2

overwrites the null character at the end of s1. 

If copying takes place between objects that overlap, the behavior is undefined.
Returns the value of s1.

char* strncat(char* restrict s1, const char* restrict s2,

size_t n);

Appends not more than n characters (a null character and characters that follow it are 

not appended) from the array pointed to by s2 to the end of the string pointed to by 

s1. The initial character of s2 overwrites the null character at the

end of s1. A terminating null character is always appended to the result. 

If copying takes place between objects that overlap, the behavior is undefined.
Returns the value of s1.



C Strings

Computer Organization

12

CS@VT ©2005-2013 McQuain

string.h: Comparison Functions

Comparison:

int strcmp(const char* s1, const char* s2);

Compares the string pointed to by s1 to the string pointed to by s2.

The strcmp() function returns an integer greater than, equal to, or less than zero,

accordingly as the string pointed to by s1 is greater than, equal to, or less than the 

string pointed to by s2.

int strncmp(const char* s1, const char* s2, size_t n);

Compares not more than n characters (characters that follow a null character are not 

compared) from the array pointed to by s1 to the array pointed to by s2.

The strncmp() function returns an integer greater than, equal to, or less than zero, 

accordingly as the possibly null-terminated array pointed to by s1 is greater than, 

equal to, or less than the possibly null-terminated array pointed to by s2.



C Strings

Computer Organization

13

CS@VT ©2005-2013 McQuain

The Devil's Function

The C language included the regrettable function:

char* gets(char* s);

The intent was to provide a method for reading character data from standard input to a char

array.

The obvious flaw is the omission of any indication to gets() as to the size of the buffer 

pointed to by the parameter s.

Imagine what might happen if the buffer was far too small.

Imagine what might happen if the buffer was on the stack.

The function is officially deprecated, but it is still provided by gcc and on Linux systems.

See:

http://accu.informika.ru/acornsig/public/caugers/volume2/issue4/gets.html



C Strings

Computer Organization

14

CS@VT ©2005-2013 McQuain

Examples

The following slides contain some short examples illustrating the use of the C string 

functions in a small, practical scenario.

The input file being used consists of GIS (geographic information system) records; each 

record is stored on a single line, by itself, and consists of a sequence of fields, separated by 
pipe characters (‘|’):

1674762|Tremont Estates|Populated Place|VA|51|Montgomery|121|371412N|0802601W|...|Blacksburg|11/13/1995|

1465730|Den Hill Cemetery|Cemetery|VA|51|Montgomery|121|370920N|0801844W|...|Ironto|09/28/1979|

1674497|Carma Heights|Populated Place|VA|51|Montgomery|121|370955N|0802613W|...|Blacksburg|11/13/1995|

1674655|Norris Hall|Building|VA|51|Montgomery|121|371348N|0802521W|...|Blacksburg|11/13/1995|

1498467|Christiansburg|Populated Place|VA|51|Montgomery|121|370747N|0802432W|...|Blacksburg|09/28/1979

The significance of the fields isn’t important for us, but you can find out more at the website 

for the Geographic Names Information System (nhd.usgs.gov/gnis.html ).

It is worth noting that some fields in some records may be empty.

In that case, there will be two successive pipe characters, with nothing separating them.



C Strings

Computer Organization

15

CS@VT ©2005-2013 McQuain

Reading a Line of Text

Here’s a function to read a line of text.  It reads to the end of the current line in the file, but 
will not put more than limit characters into the array, plus a terminator.

uint32_t readline(FILE* fp, char* line, uint32_t limit) {

uint32_t status = 0;  // 0 = OK; 1 == excess data on line

int ch;               // character just read; fgetc() returns an int

uint32_t nRead = 0;   // number of characters read so far

// read until we reach a newline or EOF

while ( !feof(fp) && (ch = fgetc(fp)) != '\n' ) {

// see if the line is longer than the specified limit

if ( nRead > limit )

status = 1;

// don't put more than limit characters into line

if ( nRead < limit ) {

line[nRead] = (char) ch;

nRead++;

}

}

line[nRead] = '\0';  // write terminator after last char in line

return status;

}



C Strings

Computer Organization

16

CS@VT ©2005-2013 McQuain

Reading All the Lines in a File

Here’s some code that uses readline() to read all the lines in the file.

// try to read a line

uint32_t status = readline(fp, line, MAXLEN);

// stop when reach end of input file

while ( !feof(fp) ) {

// check for a short read

if ( status == 1 )

fprintf(stdout, "Excess data; did not read entire line!\n");

// get length of current line

len = strlen(line);

// echo the current line

fprintf(stdout, "Read %"PRIu32" characters: %s\n", len, line);

// try to read another line

status = readline(fp, line, MAXLEN);

}

The pattern here is intended to guarantee that we check for EOF immediately after each 

attempt to read a character; this is sufficiently robust for the present case, but it can be 
improved by also employing ferror().



C Strings

Computer Organization

17

CS@VT ©2005-2013 McQuain

fgetc() and feof()

int feof(FILE* stream);

The feof() function shall return non-zero if and only if the end-of-file indicator is 

set for stream.

Be very careful with this... it does not tell you whether you’ve reached the last character in 
the file, but whether you’ve tried to read beyond that character.

int fgetc(FILE* stream);

Upon successful completion, fgetc() shall return the next byte from the input 

stream pointed to by stream. 

If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the 
end-of-file indicator for the stream shall be set and fgetc() shall return EOF. 

If a read error occurs, the error indicator for the stream shall be set, fgetc() shall 

return EOF, and shall set errno to indicate the error. 



C Strings

Computer Organization

18

CS@VT ©2005-2013 McQuain

Tokenizing a Line

Here’s some code that uses strtok() to extract all the fields in a GIS record.

uint32_t tokenize(FILE* fp, char* const str, const char* const delimiters) {

if ( str == NULL || *str == '\0' ) return 0;

uint32_t nTokens = 0;

char* currToken = strtok(str, delimiters);         // prime the pump

while ( currToken != NULL ) {     // strtok() returns NULL if no token

nTokens++;

if ( strlen(currToken) > 0 ) {

fprintf(fp, "%5"PRIu32": %s\n", nTokens, currToken);

}

currToken = strtok(NULL, delimiters);

}

return nTokens;

}



C Strings

Computer Organization

19

CS@VT ©2005-2013 McQuain

char* strtok(char* s, const char* sep);

A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence 

of tokens, each of which is delimited by a byte from the string pointed to by s2. The 

first call in the sequence has s1 as its first argument, and is followed by calls with a 

null pointer as their first argument. The separator string pointed to by s2 may be 

different from call to call.
The first call in the sequence searches the string pointed to by s1 for the first byte 

that is not contained in the current separator string pointed to by s2. If no such byte 

is found, then there are no tokens in the string pointed to by s1 and strtok() shall 

return a null pointer. If such a byte is found, it is the start of the first token.
The strtok() function then searches from there for a byte that is contained in the 

current separator string. If no such byte is found, the current token extends to the end 
of the string pointed to by s1, and subsequent searches for a token shall return a null 

pointer. If such a byte is found, it is overwritten by a null byte, which terminates the 
current token. The strtok() function saves a pointer to the following byte, from 

which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts 

searching from the saved pointer and behaves as described above.

strtok()



C Strings

Computer Organization

20

CS@VT ©2005-2013 McQuain

strtok() Example

1674762|Tremont Estates|Populated Place|VA|51|Montgomery|121|...

char* t0 = strtok(p, "|");

char* t1 = strtok(NULL, "|");

1674762○Tremont Estates|Populated Place|VA|51|Montgomery|121|...

1674762○Tremont Estates○Populated Place|VA|51|Montgomery|121|...

char* t2 = strtok(NULL, "|");

??



C Strings

Computer Organization

21

CS@VT ©2005-2013 McQuain

Tokenizing a Line

... Same code as before to loop and read lines

// stop when reach end of input file

while ( !feof(fp) ) {

...

if ( len > 0 ) {

tokenize(stdout, line, "|");

}

// try to read another line

status = readline(fp, line, MAXLEN);

}

Read 136 characters: 1674762|T...

1: 1674762

2: Tremont Estates

3: Populated Place

4: VA

5: 51

6: Montgomery

7: 121

8: 371412N

9: 0802601W

10: 37.2367952

11: -80.4336623

12: 641

13: 2103

14: Blacksburg

15: 11/13/1995


