
CS 2506 Computer Organization II MIPS 3: Pipeline

You may work with a partner on this assignment! 1

You may work in pairs for this assignment. If you choose to work with a partner, make sure only one of you submits a

solution, and you paste a copy of the Partners Template that contains the names and PIDs of both students at the beginning

of the file.

Prepare your answers to the following questions in a plain text file. Submit your file to the Curator system by the posted

deadline for this assignment. No late submissions will be accepted. For all questions, show supporting work if you want

partial credit.

You will submit your answers to the Curator System (www.cs.vt.edu/curator) under the heading MIPS03.

For questions 1 through 4, refer to the incomplete preliminary pipeline design, shown below, which includes the interstage

buffers needed to synchronize signals and data with the instructions, and support for forwarding operands. However, this

design has no support for load-use hazard detection/stall, or for properly handling beq instructions if the branch is taken.

This datapath supports correct execution of any sequence of the following MIPS instructions: add, sub, and, or, slt,

lw, and sw.

Figure 1

http://www.cs.vt.edu/curator

CS 2506 Computer Organization II MIPS 3: Pipeline

You may work with a partner on this assignment! 2

1. Consider the following sequence of instructions, which involves a number of data hazards, each of which will be

handled by the existing forwarding logic:

add $t0, $t1, $t2 # 1.1

add $t1, $t0, $t2 # 1.2

sub $t2, $t0, $t1 # 1.3

lw $t1, 0($t2) # 1.4

sw $t2, 4($t0) # 1.5

beq $t0, $t2, exit # 1.6

Note: there are no load-use hazards here that are not resolved by the existing forwarding logic.

a) [16 points] Identify all such hazards, and complete a table like the following one. The first line in the table below

IS a correct response, and shows how a row in the table should be filled in.

Writer Reader Register Source of forwarded value

--

 #1.1 #1.2 $t0 EX/MEM buffer

b) [5 points] How many clock cycles would be required to execute the given sequence of instructions on the pipeline

design shown in Figure 1?

2. [10 points] Consider the following sequence of instructions, which involves one or more load-use hazards:

lw $t1, 8($t0) # 2.1

sw $t1, 4($t0) # 2.2

add $s0, $t1, $t2 # 2.3

lw $s2, 0($s0) # 2.4

add $s3, $s0, $s2 # 2.5

add $s3, $s2, $s3 # 2.6

The sequence also may include data hazards that will be handled correctly by the forwarding logic the pipeline

includes; you should ignore those data hazards in your answer.

In order for the sequence of instructions to be executed correctly on this pipeline design, one or more nop instructions

must be inserted (so that the existing forwarding logic can do the rest). Rewrite the sequence of instructions to show

how the sequence of instructions could be "fixed" by inserting the smallest possible number of nop instructions.

3. [12 points] Consider the following sequence of instructions, which involves both lw and beq instructions:

 lw $t0, 8($t4) # 3.1

 beq $t0, $t1, L1 # 3.3

 lw $t2, 4($t1) # 3.2

L1: sub $t4, $t2, $t0 # 3.6

 add $t2, $t0, $t2 # 3.4

The sequence also may include data hazards that will be handled correctly by the forwarding logic the pipeline

includes; you should ignore those data hazards in your answer.

In order for the sequence of instructions to be executed correctly on this pipeline design, one or more nop instructions

must be inserted (so that the existing forwarding logic can do the rest). Rewrite the sequence of instructions to show

how the sequence of instructions could be "fixed" by inserting the smallest possible number of nop instructions.

CS 2506 Computer Organization II MIPS 3: Pipeline

You may work with a partner on this assignment! 3

4. Consider the alternate implementation of the MIPS pipeline sets the Write register # for each instruction in the ID

stage, as shown in Figure 2:

Figure 2

Suppose the following sequence of instructions is sent into the pipeline shown above, and the registers initially store

the values shown in the table below:

add $t1, $t2, $t3 # 4.1

add $t5, $t1, $t2 # 4.2

add $t2, $t5, $t1 # 4.3

add $t3, $t3, $t1 # 4.4

add $t1, $t5, $t1 # 4.5

a) [5 points] Which register will instruction #4.1 actually write its result to?

b) [5 points] What value will instruction #4.4 actually read from $t3?

c) [5 points] What value will instruction #4.2 actually send to the ALU for its first (left) operand?

register initial value

$t1 1000

$t2 2000

$t3 3000

$t4 4000

$t5 5000

CS 2506 Computer Organization II MIPS 3: Pipeline

You may work with a partner on this assignment! 4

For questions 5 through 7, refer to the pipeline design with forwarding and (load-use) hazard detection, shown below,

which supports execution any sequence of the following MIPS instructions: add, sub, and, or, slt, lw, and sw.

Figure 3

5. [15 points] Suppose that, due to a manufacturing defect, the InhibitFetch control signal from the load-use Hazard
Detection unit suffers a stuck-at-0 error. That is, the InhibitFetch control signal is initialized to 0 until the first

instruction enters the ID stage, and the Hazard Detection unit then always sets InhibitFetch to 0, no matter what the

inputs to the Hazard Detection unit are. Assume that the rest of the hardware operates as designed.

Suppose that, initially, the registers used below are initialized as shown below. Suppose that all the memory words are

initialized to be 8000. Consider the execution of the following code in this buggy pipeline. Determine the final values

of the $t1, $t3, and $t4 registers after all the instructions leave the pipeline (no other instructions modify any of

these registers).

add $t1, $t2, $t3 # 5.1

 lw $t3, 0($t1) # 5.2

 add $t4, $t2, $t3 # 5.3

 add $t3, $t1, $t2 # 5.4

register initial value

$t1 1000

$t2 2000

$t3 3000

$t4 4000

$t5 5000

CS 2506 Computer Organization II MIPS 3: Pipeline

You may work with a partner on this assignment! 5

6. Suppose the following instructions are in the pipeline shown in Figure 3, in the stages indicated:

lw $t1, 0($t3) # 6.1 is in the EX stage

add $t2, $t1, $t5 # 6.2 is in the ID stage

The load-use Hazard Detection Unit receives three register numbers as input:

Figure 4

a) [5 points] What register number will the Hazard Detection unit receive for input A?

b) [5 points] What register number will the Hazard Detection unit receive for input B?

c) [5 points] What register number will the Hazard Detection unit receive for input C?

7. [12 points] Review the discussions of the Forwarding Unit and the load-use Hazard Detection Unit. Suppose that

the branch target address computation and the register comparison (for beq instructions) are moved into the ID stage,

as discussed in class. We have seen that if there is a read-after-write data hazard, where the reading instruction is beq,

then it may be necessary to stall the beq instruction, for one or two cycles. For each instruction sequence shown

below, state whether beq would need to be stalled 0, 1 or 2 cycles, and state the name(s) of the register(s) involved in

the hazard that leads to the need to stall. (We assume that the datapath design has been modified to include forwarding

hardware so that operands can be substituted into the equality unit that compares registers in the ID stage.)

a) add $t2, $t0, $t1

 add $s5, $s3, $s2

 beq $t2, $s5, L1

b) add $s5, $s3, $s2

 add $t2, $t0, $t1

 beq $t2, $s5, L1

c) lw $s5, ($s3)

 lw $t2, ($t1)
 beq $t2, $s5, L1

d) lw $t2, ($t1)

 add $s5, $s3, $s2

 beq $t2, $s5, L1

Figure 5

A

B

C

D

