
Assembler Warmup

Computer Organization II

1

CS@VT ©2014 - 2020 W D McQuain

Getting Started

The first step in design is to understand the problem.

What does your assembler have to do?

- for the data segment...?

- for the text segment...?

What information does your assembler have to possess?

- for the data segment...?

- for the text segment...?

How are you going to organize that information?

Assembler Warmup

Computer Organization II

2

CS@VT ©2014 - 2020 W D McQuain

Data Segment

.data

message: .asciiz "The sum of the numbers in the array is: "

array: .word 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

array_size: .word 10
01010100011010000110010100100000

01110011011101010110110100100000

01101111011001100010000001110100

01101000011001010010000001101110

01110101011011010110001001100101

01110010011100110010000001101001

01101110001000000111010001101000

01100101001000000110000101110010

01110010011000010111100100100000

01101001011100110011101000100000

00000000000000000000000000000000

00000000000000000000000000000010

00000000000000000000000000000011

00000000000000000000000000000101

00000000000000000000000000000111

00000000000000000000000000001011

00000000000000000000000000001101

00000000000000000000000000010001

00000000000000000000000000010011

00000000000000000000000000010111

00000000000000000000000000011101

00000000000000000000000000001010

message

array

array_size

The variable declarations

in the data segment must

be parsed and translated

into a binary

representation.

Assembler Warmup

Computer Organization II

3

CS@VT ©2014 - 2020 W D McQuain

Text Segment

.text

main:

la $a0, array

la $a1, array_size

lw $a1, 0($a1)

loop:

sll $t1, $t0, 2

add $t2, $a0, $t1

sw $t0, 0($t2)

addi $t0, $t0, 1

add $t4, $t4, $t0

slt $t3, $t0, $a1

bne $t3, $zero, loop

li $v0, 4

la $a0, message

syscall

li $v0, 1

or $a0, $t4, $zero

syscall

li $v0, 10

syscall

00100000000001000010000000100100

00100000000001010010000001001100

10001100101001010000000000000000

00000000000010000100100010000000

00000000100010010101000000100000

10101101010010000000000000000000

00100001000010000000000000000001

00000001100010000110000000100000

00000001000001010101100000101010

00010101011000001111111111111001

00100100000000100000000000000100

00100000000001000010000000000000

00000000000000000000000000001100

00100100000000100000000000000001

00000001100000000010000000100101

00000000000000000000000000001100

00100100000000100000000000001010

00000000000000000000000000001100

The assembly instructions in

the text segment must be

parsed and translated into a

binary representation.

Assembler Warmup

Computer Organization II

4

CS@VT ©2014 - 2020 W D McQuain

Consider an Example

Keep it simple.

How would YOU translate a particular MIPS assembly instruction to machine code?

Consider: add $t0, $s5, $s3

More to the point... how will your program "know" those things?

What's the machine code format? (R-type, I-type, J-type, special?)

How do you know that?

What are the correct values for the various fields in the machine instruction?

How do you know that?

Assembler Warmup

Computer Organization II

5

CS@VT ©2014 - 2020 W D McQuain

Table Lookup

Consider: add $t0, $s5, $s3

.

$t0 8 or 01000

.

$s3 19 or 10011

.

$s5 21 or 10101

.

Assembler Warmup

Computer Organization II

6

CS@VT ©2014 - 2020 W D McQuain

Designing a Table

Think of the table as defining a mapping from some sort key of value (e.g., symbolic

register name) to another sort of value (e.g., register number, binary text string).

What are the key values?

What are the values we want to map the keys to?

Assembler Warmup

Computer Organization II

7

CS@VT ©2014 - 2020 W D McQuain

Implementing a Table

Define a struct type that associates a particular key value with other values; for

instance:

struct _RegMapping { // register name to number

char* regName; // symbolic name as C-string

char* regNumber; // string for binary representation

};

typedef struct _RegMapping RegMapping;

Define an array of those, and initialize appropriately; for instance:

static RegMapping Table[...] = {

{"$zero", "00000"},

{"$at", "00001"},

. . .

{"$t0", "01000"},

. . .

{"$ra", "11111"}

};

Define a function to manage the lookup you need and you're in business...

Assembler Warmup

Computer Organization II

8

CS@VT ©2014 - 2020 W D McQuain

Static Tables

Put the initialization of your table at file scope in an appropriate .c file:

// Register lookup module .c file

. . .

struct _RegMapping {

. . .

};

typedef struct _RegMapping RegMapping;

. . .

static RegMapping Table[...] = {

. . .

};

// definitions of lookup functions

. . .

Now:

• the table is created automatically when your program starts

• the table exists the whole time your program is running
• the table can only be accessed by calling the functions you "publish" in a .h file

Assembler Warmup

Computer Organization II

9

CS@VT ©2014 - 2020 W D McQuain

Mapping Fields to Bits

Consider: add $t0, $s5, $s3

functshamtrdrtrsop

10000000000100111010101000000000

table

lookup

more table

lookups

If we have the right tables and we break the assembly instruction into its parts, it's easy to

generate the machine instruction...

Assembler Warmup

Computer Organization II

10

CS@VT ©2014 - 2020 W D McQuain

Representing the Machine Instruction

One basic design decision is how to represent various things in the solution.

For the machine instruction, we have (at least) two options:

char MI[. . .]; // array of chars '0' and '1'

uint32_t MI; // sequence of actual bits

Either will work.

Each has advantages and disadvantages.

But the option you choose will affect things all throughout the design... so decide early!

Either way, you have to decide how to put the right bits at the right place in your

representation of the machine instruction.

vs

Assembler Warmup

Computer Organization II

11

CS@VT ©2014 - 2020 W D McQuain

Bits to Characters: Bit Fiddling

Alas, C does not provide any standard format specifiers (or some other feature) for

displaying the bits of a value. But, we can always roll our own:

void printByte(FILE *fp, uint8_t Byte) {

uint8_t Mask = 0x80; // 1000 0000

for (int bit = 8; bit > 0; bit--) {

fprintf(fp, "%c", ((Byte & Mask) == 0 ? '0' : '1'));

Mask = Mask >> 1; // move 1 to next bit down

}

}

It would be fairly trivial to modify this to print the bits of "wider" C types.

It would also be easy to modify this to put the characters into an array...

Assembler Warmup

Computer Organization II

12

CS@VT ©2014 - 2020 W D McQuain

Broader Perspective: Parsing the File

But, execution of the assembler starts with an assembly program file, like:

.data

Str01: .asciiz "To be or not to be..."

.text

main:

la $t0, Str01

li $s0, 4096

. . .

add $s0, $s1, $s2

bgloop:

lw $t1, ($t0)

. . .

beq $t0, $t7, bgloop

li $v0, 10

syscall

data segment

text segment

The logic of parsing is different for the data segment and the text segment.

So is the logic of translation to text-binary form.

Assembler Warmup

Computer Organization II

13

CS@VT ©2014 - 2020 W D McQuain

Broader Perspective: Parsing the File

Doing this by hand, you'd probably think of grabbing a line at a time and processing it.

. . .

.text

main:

la $t0, Str01

li $s0, 4096

. . .

add $s0, $s1, $s2

bgloop:

lw $t1, ($t0)

. . .

li $v0, 10

syscall

C provides a number of useful library functions:

How are you going to handle the high-level tasks of identifying instructions/variables?

safely read a

line of text

read

formatted

values from

a C-string

break a C-

string into

delimited

pieces,

destructively

Assembler Warmup

Computer Organization II

14

CS@VT ©2014 - 2020 W D McQuain

Parsing an Assembly Instruction

Consider: add $t0, $s5, $s3

The specification says some things about the formatting of assembly instructions.

Those things will largely determine how you split an instruction into its parts.

And, don't forget that different instructions take different numbers and kinds of

parameters:
. . .

la $t0, Str01

li $s0, 4096

. . .

add $s0, $s1, $s2

bgloop:

lw $t1, ($t0)

. . .

syscall

Assembler Warmup

Computer Organization II

15

CS@VT ©2014 - 2020 W D McQuain

Parsing an Assembly Instruction

Consider: add $t0, $s5, $s3

C provides a number of useful functions here.

Do not ignore strtok()... it's flexible and powerful.

But also, don't ignore the fact that C supports reading formatted I/O:

char* array = malloc(MAXLINELENGTH);

. . .

fgets(array, MAXLINELENGTH, source);

. . .

// determine that you read an instruction taking 3 reg’s

. . .

sscanf(array, " %s %s, %s, %s", . . .);

But… I’m ignoring the return value from

sscanf()… that may not be best practice.

Assembler Warmup

Computer Organization II

16

CS@VT ©2014 - 2020 W D McQuain

Broader Perspective: Labels

We may find labels in the data segment and/or the text segment.

.data

Str01: .asciiz "To be or not to be..."

.text

main:

la $t0, Str01

li $s0, 4096

. . .

add $s0, $s1, $s2

bgloop:

lw $t1, ($t0)

. . .

beq $t0, $t7, bgloop

. . .

bne $t7, $s4, done

. . .

done:

li $v0, 10

syscall

data segment

text segment

Assembler Warmup

Computer Organization II

17

CS@VT ©2014 - 2020 W D McQuain

Broader Perspective: Pseudo-Instructions

What's the deal?

.data

Str01: .asciiz "To be or not to be..."

.text

main:

la $t0, Str01

addi $t0, $zero, Str01

la actually translates

to an addi instruction

Assembler Warmup

Computer Organization II

18

CS@VT ©2014 - 2020 W D McQuain

Broader Perspective: Labels

What's the deal?

.data

Str01: .asciiz "To be or not to be..."

.text

main:

la $t0, Str01

addi $t0, $zero, Str01

addi $t0, $zero, <address>

la actually translates

to an addi instruction

Labels translate to 16-bit

addresses... how?

Assembler Warmup

Computer Organization II

19

CS@VT ©2014 - 2020 W D McQuain

Memory

.data

Str01: .asciiz "To be or not to be..."

.text

main:

la $t0, Str01

li $s0, 4096

. . .

0000 2000 "To be or ..."

0000 0000 la $t0, 0x2000

0000 0004 li $s0, 4096

.

data segment

text segment

Assembler Warmup

Computer Organization II

20

CS@VT ©2014 - 2020 W D McQuain

Memory: a More Accurate View

0000 2000 01010100

0000 2001 01101111

0000 2002 00100000

0000 0000 001000 00000 01000 0010 0000 0000 0000

0000 0004 001001 00000 10000 0001 0000 0000 0000

.

data segment

text segment

ASCII code for ‘T’

ASCII code for ‘o’

machine code for ‘la $t0, 0x2000’

machine code for ‘li $s0, 4096’

addresses

Assembler Warmup

Computer Organization II

21

CS@VT ©2014 - 2020 W D McQuain

Symbol Table

The assembler needs to build a symbol table, a table that maps symbolic names (labels) to

memory addresses:

0000 0000 main

0000 001C bgloop

0000 2000 Str01

Building the symbol table is a bit tricky:

- need to know where data/text segment starts in memory

- may see a label in an instruction before we actually see the label "defined"

One reason most assemblers/compilers make more than one pass.

We want the symbol table to be built before we start translating assembly instructions to

machine code — or else we must do some fancy bookkeeping.

Assembler Warmup

Computer Organization II

22

CS@VT ©2014 - 2020 W D McQuain

Incremental Development

Plan your development so that you add features one by one.

This requires thinking about (at least) two things:

- How can I decompose the system into a sequence of "features" that make sense.

I often start by asking what's the minimum functionality I need to be able to actually

do anything? Frequently, that's a matter of data acquisition... so I start with planning

how to read my input file.

Now, what can I do next, once I know I can acquire data?

- In what order can I add those "features"?

This is usually not too difficult, provided I've given enough thought to the

specification of the system and thought about how I might handle each process that

needs to be carried out. But, if I get this wrong, I may have to perform a painful

retrofit of something to my existing code.

Assembler Warmup

Computer Organization II

23

CS@VT ©2014 - 2020 W D McQuain

One View

program.asm

cleaned.asm

preprocessor
read, build list of symbols and some of their addresses, elide comments, etc.

symbol table

data segment handler
read data segment, build binary representation of variables, symbol addresses

dataseg.o textseg.o

program.o

text segment handler
read text segment, build binary representation of instructions

Assembler Warmup

Computer Organization II

24

CS@VT ©2014 - 2020 W D McQuain

More Questions

But this analysis leads to more questions, including (in no particular order):

When/where do we deal with pseudo-instructions?

Some map to one basic instruction, some to two… is that an issue?

What "internal" objects and structures might be valuable in the design/implementation?

Instructions (assembly and machine)?

Build a list of instructions in memory at some point?

How should this be broken up into modules?

What focused, smaller parts might make up a text segment handler?

Assembler Warmup

Computer Organization II

25

CS@VT ©2014 - 2020 W D McQuain

Testing

I will test features as I add them to the system.

NEVER implement a long list of changes and then begin testing. It's much harder to

narrow down a logic error.

This may require creating some special test data, often partial versions of the full test data.

For example, I might hardwire a string holding a specific assembly instruction and pass it to

my instruction parser/translator module.

Or, I might edit an assembly program so it only contains R-type instructions so I can focus

on testing my handling of those.

Assembler Warmup

Computer Organization II

26

CS@VT ©2014 - 2020 W D McQuain

Tools

Take advantage of the diagnostic tools:

gdb

can show you what is really happening at runtime

which may not be what you believe is happening at runtime

breakpoints, watchpoints, viewing values of variables

valgrind

can show you where you have memory-usage bugs

finds memory leaks

finds memory overruns where you exceed the bounds of a dynamic array

Assembler Warmup

Computer Organization II

27

CS@VT ©2014 - 2020 W D McQuain

Pragmatics

Use the right development environment: CentOS 7 with gcc 4.8.x.

Do that from the beginning; don't wait until the last few days to "port" your code.

Read Maximizing Your Results in the project specification.

Small things within your control can make a huge difference in your final score.

There are many of you and few of us, so you cannot expect special treatment.

Use the supplied test harness (shell scripts and test files).

If your packaged submission doesn't run properly with these for you, it won't do that

for us either.

There are many of you and few of us, so you will not receive special treatment.

Use the resources…

The course staff is here to help.

Most of us have prior experience with this assignment.

