MII—P S

TECHNOLOGIES

MIPS32® Architecture For Programmers
Volumell: The MIPS32® Instruction Set

Document Number: M D0O0086
Revision 2.50
July 1, 2005

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001-2003,2005 M1 PS Technologies Inc. All rights reserved.

Copyright © 2001-2003,2005 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying,
reproducing, modifying or use of thisinformation (in wholeor in part) that isnot expressly permitted in writing by MIPS Technologies
or an authorized third party isstrictly prohibited. At aminimum, thisinformation is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in amodifiable form such asin FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogiesreservesthe right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of thisinformation, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of thisinformation, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of thisinformation, or any related
documentation of any kind, isrestricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of thisinformation by the Government isfurther
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS I, MIPSIII, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4K Sc, 4KSd, M4K, 5K, 5K c, 5Kf, 20K c, 24K, 24K c, 24Kf, 24KE, 24K Ec, 24K Ef, 25K, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CorelV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.14, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS32

MIPS32® Architecture For Programmers Volume Il, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 ADOUL THIS BOOKccuiiiiiieieeeeet ettt ettt h et h e b e bt s b e e b e be s e e se et e e e e e e eneeneeaeenenbenaeebea 1
1.1 TypographiCal CONVENTIONSc.ciiitiriereeieieieeeet ettt se bt se e se e st s ae e st ebesbe s bt sbeebeseese e s e s e e et eneeseeaesbenaas 1
LA T THAHC TEXE oottt b etk h e b bt s e b bt e bbbt s e se s E ke bt e b bt s b b e b e e e b 1

I 2 = o o B I = ST Sr O SOE TSP UE TSP UTPTSTPUPTRTR 1

L. 1.3 COUMEY TEXE ettt e bbb e bR Rt Rt R et R et b et b e e e e e nn s 1

1.2 UNPREDICTABLE @nd UNDEFINEDccooiiieiiiiiiieiieiriseteeses ettt 2
L2 1 UNPREDICTABLE ..ottt ettt bbbt st b bt s bbbt 2
L22UNDEFRINED ..ottt b et b bbbt b bbb bt s bbbt e e 2
L2.BUNSTABLE ..ottt bbbt b et b bt e bbbt e bt e bbbt e 2

1.3 Special Symbolsin PSeUdOCOOE NOLEEIONcccoiiiiiiiieie ettt et sae e 3
1.4 FOr MOFE INFOIMEBLION ...ttt s e e e h s b bt e b e n e st e s et nn s 5
Chapter 2 GUIJE tO the INSIIUCTION SELocvitiieeiireeiirie et b bt e bt en bbbt b s na e nnenes 7
2.1 Understanding the INSIFUCLION FIEIASc.coviiiiiieieer bbb 7
211 INSIUCHION FIEIAS ..eeiiciiiecetiee ettt bbbt b et b et b et e b e b e bt et r st 8
2.1.2 Instruction Descriptive Name and MNEMONICccovviirieirieiriee ettt 9

B G o 4 0= A = Lo S 9

2 LA PUMPOSE FTEIO ..ot b bbb b e e n bRt nne 10

2. 1.5 DESCIIPLION FIEIA ...ttt b e bbb e bbbt nne 10
216 RESITCHONS FIEIA ..ottt b bbb b e e st b et bt nrne 10
2.1.7 OPEFEtioN FIEIA ..ottt b bbb bRt bRt nne 11
218 EXCEPLIONS FIEIA ...t b bbb et nne 11
2.1.9 Programming Notes and Implementation NOteS FIeldS ..o 11

2.2 Operation Section NOtation and FUNCLIONScioiirieiriiiriecreerieereee st 12
2.2.1 INStruction EXECULION OFTEITNGo.eivetirieiirieierieierieesi ettt et e b e n et enene 12
2.2.2 PSEUOOCOUE FUNCLIONSviuitiaetiieteeetesiet ettt ettt b et b e s et e bt b st bt erne 12

2.3 0p and FUNCtion SUDFIEIA NOLAETON ceiieiieieeieeete ettt 22
24 FPU INSLIUCHIONS ...viitiiteitieteste sttt seesee e e e e eseese st saestesaesaesbesbeseessenseeeseemeeseeneeseebessesaeebenbeseeseanteseneenseneeneenessennes 22
Chapter 3 The MIPS32® INSITUCHION SELcuecieieeceee e st e et sae s s re st e s e e e tese e e enee e e e enensenneens 23
3.1 ComplianCe aNd SUDSEIIING ..eveivieierieiierieieeeie e eee st s e e st st s e e e aese e e e se e e eseesessesaesresseseessensenseneeneenannensensenses 23
3.2 Alphabetical List Of INSITUCLIONScivieeiciceceeeeese sttt a e e et e e e enanneeneenenns 24
=S 1111 SRRSO 33
AADD . R R R R R R R SRR R R AR R SR E AR R R e R AR e e R Rt ren e enn 34
I ¢ ST S ST 35
5 SRRSO 36
AADDIU ... R R R R R R R R R R e e R e Rt ns 37
AADDU ... R R R R R R AR RS R R R e R R e e R Rt nen e nrens 38
ANV PSR R R RS R e R AR R e AR R Rt e e rens 39
o N SRRSO 42
o N SRRSO 43
2 ST TTT a4
2 ISP 45
2 1 ST RSTTT 46
211 ST RTTT 48
2 1 ST PTRSTTT 50
2 1 I PSPPSRSO 52
2 072 SRRSO 54
20721 PSPPSR 55
2] 0722 ST STTT 57
2] 0722 I ST 58

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BEQL ..ottt ettt h et be st et et et e At eheeheeae At et eeheeheabesEeareteatetenseReeReeReeReeteeReeReatebesretentesenseneeaeeneerens 61
BGEZ ...ttt ettt be ettt et e aae et bt et bt e beahe e beebeeabeahe e bt ehe e bt et e bt eaeesbeentesheebesbeenbenheenbeereenns 63
S]] USSR 64
[T] I PSSR 65
[T] 7 PSSR 67
[T 17RO 69
[T 174 RSO 70
T I 7RO 72
[T I 74 OO R 73
T R 174U 75
[T I 174 PSSR 76
[T I 174 I OO 77
[R 174 PO 79
BINE oottt ettt ettt s et sttt e bt ebe et e ehe e bt eheeabeaeeaheeteahe e beebeeabeebeeabeeheenbeehe e be et e bt aaeesbeetesheenbeabeenbenreenbeereenns 81
BINEL ..ottt ettt ettt et e st e e st e s e e be et e ebe e beehe e abeeaeesheeaaeahe e beahe e beeheeabeeheeabeehe e beeaeeaaeaReeabeenteeheenbesbeenbeereenbeereenes 82
BREAK ..ottt ettt sttt st ettt et e s b et eebe e beebeeabeahe e abe et e bt eteahe e beah e et e ebeeabeehe e beehe e bt aaeeabeeaeeabeenteabeenbesbeenbesreenbeereents 84
(@ o020 I 111 TR URTOUPRRPSRT 85
L7 O o OO 90
LI I 1 ¢ | TR 97
(O T8 o) OO 99
(O 3 OO RRTRRR 100
(O O OO TRR 102
(O TSROSO 103
L OO TRRR 104
(00] =2 OO RRTRRR 105
(O 51 OO 106
(O 12 OO 108
(XY I B 5 1 0| SRRSO 109
(A I T 1 0| ORI 110
LAY I X SRRSO 112
LAY BN {1 1| OO RRTRRRO 114
(AT I = OO 115
(OAY N I X = U OO RRTRRR 116
LAY I LV ' | OO RRTRR 117
[0 T SRR 118
[] SRRSO 120
[0] SRR 122
[] Y o SRRSO 124
[] YOO 125
[= SRRSO 126
= ISR RRTRRR 127
L SO 129
=3 SRR 131
[@1] =38 N 1 | SO ROTRSRTRRR 133
[IO 1@ = YV 11 OO ROTRSRTRR 135
I S ettt b et et e et et e bt e e ahe e ae bt eabe b e eabeehe e beeheebeaaeeabeeReeaheeateaheenteah e e beeheeabeehe e beereeareeaeeareenresreenrens 136
J et ettt ettt ettt i e e eteieeateeeeabeeteabeeteabeeteabeeteaheeteeheeateaaeeabeeaeebeeateabeeheeabeeateebeeteaheeteaaeereaheeabeeaeebenaeebenarents 138
I OSSR 139
I I OSSOSO 140
Y 3 | TSSOSO 142
S OSSOSO 145
S o = TSSOSO 147
I = SO 150
[0 = 1 SRR RRTR 151

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LD CZ. .. e e E e R R e e e e 153
[O PP PP 154
N TP TSP 155
LHU e e R e 156
TP PP 157
LU e e E R R R e e 159
[0 O PP P T 160
TP TP 161
T TP TSP 162
LWV 2. e e E R R e 163
LWV L e e e E R e E R e r e 164
LWWVR e e R e E e e e e 167
[Tt TP PP T 171
IMADID .o e R R R e r e 172
N B § 0| TSSOSOV P VPP 173
IMADDU e e E R e 175
OO TP P TP 176
5t TP P TR 177
IMIECZ e bR e E R R R e r e e e 178
o 3 PP P TP 179
1 o TP TP 180
1 o | PP PP 181
1 O TP TSP 182
L@ Y 1 o TSSO S PSP S YR P VRPN 183
O L TP TP P T 184
VIOV LTI, .ottt ettt E et h et R et R e SR s e E e e e e Rt e e e b e e e bt e e e bt e e et e Rt e Rt e Rt r e nn s 185
O L TP P TSR 187
@Y A 1 01 TSSOSO S VST SVRPR 188
O L TP TSP 190
L Y I 1 o | OSSPSR PSP SV RSP PR 191
MOV Z ... e E bbb e E e b e e R E e R R e 193
L@ Y § o 1| TSSOSO S PSP SV PTP PP 194
IMISUB e e R R R e r e 196
S 0 o | TSSOSO PSSP VPP 197
IMSUBIU . bbb bR e E e e e R R R e r e 199
IMITCO . et b e b b e b e b e b s e R e b e e e R e R e R R R e r e e 200
I I TP PP T 201
I I TP TP 202
I I [TP PP TOR 203
I I [T TP P TP 204
I I TP TP PP R 205
I TP TP 206
IVIUL e e b b h R R e R e e R R R e r e 207
IVTUL FIMIE ettt b et et Rt R e R s e e R e s e e Rt e e e R e e bt e e e bt e e st e R et e Rt Rt r e nr s 208
1 PP TP 209
IMULTU e e bbb b E b e d b e e bbb e e b e R e s b e e b b se e e e e se e e 210
LN 1 L ST TP SP SV P PP 211
NIMADD FIMIE 1.ttt et e Rt h et Rt Rt R e s e R e s e e Rt e e b e e bt ne bt e e st e Rt Rt Rt r e r s 212
NIMISUB I ...ttt et e bRt R et R e se R se R e s e e Rt e e e b e e e bt se bt e e st e Rt Rt e Rt r et nr s 214
NP .. et E bR e R R R R e r e e 216
N[TP PP 217
L T TP PO PP 218
L0 T PP O PRSP 219
P PS e E e e e e 220

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PREF covvvceeevoeeeeeeeeeesesseeseesesees e eeseeesssses s seseeesse e 1222 e e 22 ettt 2 e ettt e st reseeees 222
PREFX c.vcvorreeeeeeseeseesesssesesesseesssssesessssesss e essessessee e s 222seeeee e 122 ettt 2 e et e et e s e e e eeeeseseeees 226
PUL .PS...coooteeeeeeeeeeeseesesesesseessssseeesssseess s essessesseses e 2 e 2eeeeese e 122 e e e 2o s et e e e st s seessssenees 227
PUULPS ..o eeeeeeeeesesesees e ssseeesseees s esssssessee s 22 2seeees e 122 e 12 e st s e e s e s sesssssenees 228
RDHWR ...t eeeveeeeeseseseeseeesseseeesseseess s esssssesseeese s e s 2seeesse e e 22 e s et e st e ee e e s e eesesesssssenees 229
RDPGPR ... oot eeeeeeeeeseseseeseeesesseeesseseesss s esssssessee s e 2e2seeeese e 22 e st 12 et e e e s e esseneessssenees 231
RECIPIMIE ... eeeveeeeeoeeseseeeeeeseeseeessesesss e esseseesseeese s e seeeeese e e e s e e e e e s eseseeesseseeeeeeessesesssssesees 232
ROTR oo eeeeeseeseesesesees e eeseeessesee s seeseesse e 1222 e e 1222t eeeeeeeeeee12 e et e et e s e sseseessssenees 234
ROTRV oot eeeeeeeeoseseseeseeesssseeesseseess s esssesessees e 222 eeeeee e 122 e st 120ttt e e e st esseseessssesees 235
ROUND.LFIMIE et vvvveeeeeeoeeeeee e eeseeeseesese s esssssesseessese e sesseesssseess e ssseeeessesesseeessesseeesssesseseeesseseseeeseeessesesssssesees 236
ROUND.M.EME oo 1vvveeeeeeeeesees e eeseeeeeesssssesesesssessesseesseseessessseessseeeess s ssseeeessesesseeessesseeesssseeseseeesssseseeeseeessesesssssesees 238
RSQRT I e eeeveeeeeseeeseeseeeseeseeessesessse e essessesseese e e seeeesse s e e s eeesee e e e s e eeeseeesseseeeee e eesesesssssesees 240
SB o vveeeeeree e eseseeeee e e e ettt 25ttt e ettt et sene e 242
ST e eseseeeee e s ettt 25ttt e ettt et seneeee s 243
SDBBP ... eveeeeeee e eeseeeeee e ee ettt e ettt et ser e 246
SDCL oot eeeeeeeee e e eeseeeese e e e et e et e e sene e 247
SDIC2. e eeeeeeeee e es ettt ettt et et sene e 248
SDXCL e eeeeeeeeeneseseeeeeeseseeseseeeee s esseeeeese s e e e 2t e ettt et seneeee s 249
SEB ovoeeoeeeeeeeeeeseeeeese e eseeseee e ee ettt e ettt et esene e 250
SEH oo eeeeeeeeeeeeeeesseeee e eseesese e e e et e et e et seneeee s 251
SH o vvvveeeereeeeeeeeeeesesseeseee e seeseee ettt 2ot e ettt et eeeeesereee s 253
SLL oot eeeeeeeeeseeee e eseeeeee e e ee ettt e ettt et ee e s s ere e 254
SLLV oot eeeeeeeesee e eseesese e e e sttt e st e e ee e e s ene e 255
ST oo eeseseeeeeee e eseeeese e ettt ettt et esene e 256
SLTT oo eeeeeeeeseeeeee e eeseesese e s eseeessse e e e e 2 et e ettt e st sene e 257
SLTTU ot eeeeeeeeeseeeeeeeeeeeeseeeese s s sseeessse s eseesee a2 e et e e e st e e s s e e e sesesesseneeeees 258
SLTU oot eeeeeeeesseeee s eesessese s e eseeeesse s e e e 22 e et e e 12 ettt st ee e e seneeee s 259
S0 2 IR 111, SO 260
SRA oo e eeseseeeee e sttt e et 2 et et e et ee s ene e 261
SRAV .o eeeeeeeee e eseeeese e e sttt 2ttt e et sen e 262
SRL coveeereeeeeeeeeeeseseeeseeeee e eseesese e e ee ettt e ettt et e e esene e 263
SRLV oot eeeeeeeess e eeeeeseseesese e s e eseeeeee e ettt e ettt et ssene e 264
SSNOP ... eeeeeeeee e eeseeeeees e e eseeeee ettt et s et e e sene e 265
SUB ..ot eeeeeeeessee e eseeeese e s e ee ettt e ettt et sene e 266
SUBLFIMIE e eeveeeeeeeeeese e eeseeeeseeesss e esseeessse s eeeesess e e e e st e e e et e e e sesesesseseeeenrs 267
SUBU ..o eeeeeeeeeeees e eeseeeese s sseesssse e e e e e 2 e et e ettt et ee e s ene e 268
SUXCL e eeeeeeeeeseeeeseeeeseesseeeeseeesss s ssseseessse s eseeeesse e 2o et e st e e e s s e seeeeesseseeeens 269
SW oo eeeeeeeee e ettt 2ot e ettt esene e 270
SWCL oo eseeeese e e e ettt ee s eneeee s 271
SWC2 ..o eeveeeee e eseeeese e ettt e e sene e 272
SWWL oot eeeeeeeese e eseeeese e ettt ettt s ene e 273
SWR oo eeeeeeeoee e eseeeese e e ettt ettt et e e sene e 275
SWWXCL e eeeeeeeeeee e eeseeeeee s s seeeeess e e 2ot e ettt et ee e s eneee s 277
SYNC oot eeeeeeees e eseesese e e e e e 22t 2ot e ettt et sene e 278
SYNCH oo eeeeeeeeeeeee e eeseeeese s s e s eeeees e e e e 2ot 2o ettt et eeeeesene e 282
S A oY oo 285
L 1= YOS 286
L 1= oSO s OO 287
TG e e eeeeeeeeeeeeeee e seesesese e s 22 e ettt ettt esene e 288
TGE] e eeeeeeeeee e e eeeseeese e e es e s et e et e st e s ene e 289
TGEIU oo eeeseeesee e seeseess e e s e e 2o et e ettt ee e e s eneee s 290
TGEU oo eeseeeses e eseeeees e e e e 22222 e ettt sene e 201
T B eeeeeeeeseeee e eeseeesee e s eeeeee e e e et et e ettt sene e 292
TLBR oot eeeeeeeesseeeeee e seeseseseeese s eseeseess e 22 e e et 2 et ettt e st s s ene e 293

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLBWWR ettt b s £ b h £ E R A€ £ E bR £ R bR £ R b SR e R R R e e bRt e R bRt e b 297
T T etttk b et b bt R R E R R R R R £ £ R R R £ RS h R AR E SRR RS E R e AR R R R e e Rkt E R R Rt e e b 299
1 I TSSOSO SO PPV OTPRRPRTPTPP 300
TLTTU ettt e bR e £ bR £ £ bR e R e £ bR 4 £ 4 E b b e £ R bR e AR b e e Rkt e R bR e e b 301
T TU ettt bbb e E bR r e E bR £ R R AR RS h R A £ A SRR £ R b eR R R R R e e R bt e R bRt e e b 302
TN E ettt b E bR e SRR R £ £ R AR R RS h R A £ RS E R £ R R SRR R R R e e bkt E R bRt e e b 303
TINEL ettt bR £ R R £ AR R AR £ bR £ A SRR £ SR E SRR R R R e e b bt R bRt e b 304
TRUNC.LFMLE ottt et b et b e e E bbb bt e e b bt e b ket b bt e bt 305
TRUNCW M.ttt b et e b b s e £ b b1 e e b b e £ b bt e e e b b et s e bk et b b e e bt 307
WV A T bbbtk e b bR R R R SRR R £ SRR R E SRR R AR R R e R AE R R e R E R R e AR e e R b bt et e bRt e renis 309
WWRPGPR ...ttt bbb bbb e E b st £ £ bR e e 4 e E b e R AE R bkt E R R bR e R bRt et e bRt e bt 311
WVSBH .t b e E R e R bR R R R R R RS eE R R R R R R R e R bRt et e bRt e bt 312
XIOR ettt b b E R R £ R R R4 E S E R R £ AR SRR AR R bR £ AR A SRR £ SRR SRR R R R e e e bRt e R bR ne e e b 313
ORI ettt bbbt bbbt £ E bR 4 e E bR £ £ R SRR £ RS h R A £ SRR R £ SRR SRR R R R e e bkt E bRt st e b 314
Appendix A INStrUCtion Bit ENCOOINGScoveoeiriiriirietinietisiet sttt b e b e se st s s s b e b ss s s s 315
A.1 Instruction Encodings and INSLIUCHION CIASSESeciiuiiriiiieiieisie et s 315
A.2 Instruction Bit ENCOING TADIES ..ottt 315
A.3 Floating Point Unit Instruction FOrmat ENCOTINGSccuruereriirieinieinieisieesie s 322
APPENAIX B REVISION HISLOMYveiviieieiisieiiesii e seeeee ettt sttt st e e e e e s eseeseeseesessesaesteseeseensenseneeneenenneenens 325

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

vi

List of Figures
Figure 2-1: Example Of INStrUCtiON DESCIIPLION.........eiuiitiriireiterie ettt st e et be bt sbesbesbesnen 8
Figure 2-2: Example Of INSEIUCHION FIEIAS........coiiiiiiiiee et et sae b e e 9
Figure 2-3: Example of Instruction Descriptive Name and MNEMONICccoouriririiinere e 9
Figure 2-4: Example Of INSLIUCHON FOMMEL.........coeiiiiiiie ittt e e e bbb bbb snens 9
Figure 2-5: Example Of INSLIUCLION PUIMPOSEcoutiiitiiiii ettt b e sttt se b e saesbe b e 10
Figure 2-6: Example Of INStrUCtioN DESCIIPLION.........ccuiiiiiitirierie ettt st e b e saesre b e 10
Figure 2-7: Example Of INStrUCiON RESIICLIONScc.iiiiiiiiese ettt et s sae b b e 11
Figure 2-8: Example Of INStrUCEION OPEIELIONcoueitiriirieitirierie ettt sttt e e e ese b ae e sbe b e 11
Figure 2-9: Example Of INStrUCON EXCEPLIONcouiitiiiiiitisiesie ettt st st sne b b e 11
Figure 2-10: Example of Instruction Programming NOEES..........cc.oiiieriieirrceescre sttt sre e 12
Figure 2-11: COP_LW Pseud0COde FUNCLION........ccccieiieie ettt st e e e et sae e e stesseestesnaenseesaeseennenseenns 13
Figure 2-12: COP_LD PSeUdOCOUE FUNCLION........cciiiieiiecee sttt st e st et este et e sreesae e e stesseetesaaenteenaeseennenseenns 13
Figure 2-13: COP_SW PseudOCOTE FUNCLIONcocuiiieie ettt et st e e ste s e tesaa e e ena et e ennenneenns 13
Figure 2-14: COP_SD Pseud0COdE FUNCLION.........ciiiiiciicee ittt stee st te e e ste e sreesae e e saessaestessaesseenaeseennenseenns 14
Figure 2-15: CoprocessorOperation PSeudoCode FUNCHION.........oo.iiiieiieieeeeee et 14
Figure 2-16: AddressTrans ation PSeuUdOCOE FUNCLION...........cceiieiieiieie ettt st e b e enreenns 15
Figure 2-17: LoadMemory PseudoCOde FUNCLION..........ciiii ittt st st enne s 15
Figure 2-18: StoreMemory PSeudoCode FUNCLION.............cciiiiie ettt st s te s be s e b e ennenreenns 16
Figure 2-19: Prefetch PSeUdOCOOE FUNCLION...........coi ittt et st e e sae s e e tesra e e enaebeennenseenes 16
Figure 2-20: SyncOperation PSeUdOCOOE FUNCEION.........coiiiiiiieiiecie ettt s sr e 17
Figure 2-21: ValueFPR PSeUdOCOUE FUNCLIONcc.ociiiicee ettt st ste e te s et ena e beennenneenes 18
Figure 2-22: StoreFPR PSeudOCO0E FUNCLIONcciiieiicie ettt e et s te e e e ena e beennenneenns 19
Figure 2-23: CheckFPEXception PSeudoCode FUNCLION ..ot 20
Figure 2-24: FPConditionCode Pseudocode FUNCLION............cooiiieie ettt s st ne s 20
Figure 2-25: SetFPConditionCode Pseudocode FUNCLION...........c.ceiiiieieiiee ettt st s e e nre s 20
Figure 2-26: Signal Exception PSeudoCode FUNCLIONooviiiiiieiiicie ettt s 21
Figure 2-27: Signal DebugBreakpointException PSeudocode FUNCLION............ccoiiiiiiinene e 21
Figure 2-28: Signal DebugM odeBreakpointException Pseudocode FUNCLION..........c.cooiiiiiiinene e 21
Figure 2-29: NullifyCurrentlnstruction PseudoCode FUNCLION.............ccoiiieiiiiierecie e este et 21
Figure 2-30: JumpDelaySlot PSEUAOCOOE FUNCLION ..ottt et s 22
Figure 2-31: PolyMult PSEUdOCOTE FUNCLION.........cciiieiecie sttt et e e ste s e tesra e beene e beennenseenns 22
Figure 3-1: Example Of an ALNV .PS OPEIAiONcc.oiiiiiirierie ettt sttt e s e e b s saesre b s 39
Figure 3-2: Usage of Address Fieldsto Select INdex and Wacceeciieeiiceececese et 91
Figure 3-3: Operation of the EXT INSITUCLIONcoiiiiiiiiese ettt s st sbe e 131
Figure 3-4: Operation Of the INS INSLIUCLIONc.coiiiiiiiiiee e e s ebe e 136
Figure 3-5: Unaligned Word Load USiNg LWL @nd LWRooiiiioie ettt ne s 164
Figure 3-6: Bytes Loaded DY LWL INSLIUCLIONccuvciiiiciice ettt s sne e ennesneesnesnnesrennnens 165
Figure 3-7: Unaligned Word Load USiNg LWL @nd LWRc.ooiiiieie ettt st st 168
Figure 3-8: Bytes Loaded by LWR INSITUCHIONociieiiecc sttt s sae e ae e snesnnesrennnens 169
Figure 3-9: Unaligned Word Store UsSing SWL and SWR.......c.ooi oottt sae e sne e st nnaens 273
Figure 3-10: Bytes Stored by an SWL INSITUCHIONocviiicicees ettt sa e e snesnaesrennnens 274
Figure 3-11: Unaligned Word Store UsiNg SWR and SWL.......coouv oottt 275
Figure 3-12: Bytes Stored by SWR INSEIUCLION.........ccviiiiieieceesie et ste st e st e s sreessesneesaesneesnesnnesrennnens 276
Figure A-1: Sample Bit ENCOAING TaDI@.......coiiiie bbb et sbeenas 316

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation SEBEEMENTScccoererirereiene e r e s 3
Table 2-1: AccessLength Specifications for LOAdS/SIOrES.couoiiirireeceeeere e e 16
Table 3-1: CPU ArithMELiC INSLIUCHIONS.......coutitiitirie ittt sttt sb s b se et b e e e e e e seebeeaeesesbesbesaesaeneas 24
Table 3-2: CPU Branch and JUMP INSIIUCLIONS...........iitiiiieieeeeeee ettt st s sb s ene e 24
Table 3-3: CPU Instruction CoNntrol INSEIUCLIONSc.cieieiiieeeseeeeeeee sttt st e sb e sae b e 25
Table 3-4: CPU Load, Store, and Memory Control INSIFUCLIONSccviieieiierie et eesneens 25
Table 3-5: CPU LOQiCal INSLIUCLIONS.........ccieiiieiieiestesteeeesteeseeste e st este e e ste s e e e sae e tessaeseeseasseeseessesneesseeneesseensessesnsessenns 26
Table 3-6: CPU INSEr/EXIIaCt INSIIUCTIONSeotiitiieiitite ettt st st s e et be et ebesbesae b e 26
Table 3-7: CPU MOVE INSITUCLIONS......coueitiiiiiititeetesie sttt sttt eb e bt st bbb b e b e b se e s e s e e e et eseebeeaeeaeebesbesaeebeneas 26
Table 3-8: CPU Shift INSITUCLIONScouiiiiiiiiteetese sttt b et s b e s b b et b e e e s et et e st ebe e st eaesbesbesaeeaeneas 27
Table 3-9: CPU Trap INSLIUCHIONScoutitirierititeetesie sttt sttt sttt ebe bbb sbe b se et e b se e e es e e e e e eaeebeeaeeaesbesbesaeebeneas 27
Table 3-10: Obsolete CPU BranCh INSITUCLIONS..........couiiiiieieeeeeeeeeee sttt st et sb b saeene e 28
Table 3-11: FPU ATithmetic INSIIUCHIONS........coutitiie ittt b bbb e e et et b e s e s sbesbesaesae e 28
Table 3-12: FPU Branch INSITUCHIONS........coeiiiiiiie ettt bt st ettt be et aesbesbesae b e 28
Table 3-13: FPU COMPAIre INSLIUCTIONS........cctitirterie ittt sttt ettt sttt sae b sbe b see b e b see s e s e e e e eseesesaeenesbesbesaeebeneas 29
Table 3-14: FPU CONVEIT INSIIUCLIONSco.ciuiitiitiiie ittt sttt sh s b st st e s st e e be s st e s sbesbesaeebeneas 29
Table 3-15: FPU Load, Store, and Memory Control INSLIUCLIONS...........cceeieiieieiiesieeeese et eee e esae e sae e sae e esesneens 29
Table 3-16: FPU MOVE INSIIUCTIONS........ccutitiiiiitieterie sttt ebe bt st sh e b b se et b se e s em e e e e e e seebe e st eaesbesbesaeeneneas 30
Table 3-17: Obsolete FPU BranCh INSIIUCLIONS...........ooiieieieieie ettt st e sbesnesaesnesaas 30
Table 3-18: Coprocessor BranCh INSITUCLIONS.......c..oiiriieeeieee ettt et et sb e b saesne e 30
Table 3-19: CoprocesSOr EXECULE INSLIUCTIONS.eiuirtiieieeieeiere ettt st sr st st st be e e e e seese s st esesbesbesaesaeneas 31
Table 3-20: Coprocessor Load and SLOre INSITUCHTIONSoiviieieieieeeeeeei sttt s sb e 31
Table 3-21: CoproceSSOr MOVE INSITUCLIONSccueiuiiiitiieree ettt bbb st e ettt ea s st eaeebesbesaesaennas 31
Table 3-22: Obsolete Coprocessor BranCh INSLIUCHIONS..........cveivereeieieeeeeiere sttt s sb e sne s 31
Table 3-23: Privileged INSLIUCLIONScccviiieciecieie ettt st te st e b e saa et e saeentesaeesseeneesreenaesaeensesaeensessnens 31
Tabhle 3-24: ETTAG INSITUCLIONScouoiiiiiiterititeete sttt sttt sb e b ae b b e b e et e b se e e e s s e e et eaeebeeaeenesbesbesaeeneneas 32
Table 3-25: FPU Comparisons Without Special Operand EXCEPLIONS........cccoeiirirereiiinenie e 86
Table 3-26: FPU Comparisons With Special Operand Exceptions for QNaNS...........ccoiiireiereienereeeeeeeeeeerese e 87
Table 3-27: Usage Of EffECtiVE AUAIESScci ettt et e ae e s ae e e s reeaesreeeesreentesnnens 90
Table 3-28: Encoding of Bitg17:16] Of CACHE INSIIUCIONooviiiiiiiiieneit s 91
Table 3-29: Encoding of Bits [20:18] of the CACHE INSLIUCHION..........cciiiiiriiiieriesie st 92
Table 3-30: Values of the hint Field for the PREF INSLIUCHIONc..ciuiriiieieeeeeeeeeenese e 223
Table 3-31: HardWare REQISIEN LIStcciiieeiicieeie ettt s ettt sre et e e aeesee s e e sresneeseesnsessesnsenseensenreenes 229
Table A-1: Symbols Used in the Instruction ENCOding TablES.........cc.oiieiiiieiceee e 316
Table A-2: MIPS32 Encoding of the OpCode Field ..o 317
Table A-3: MIPS32 SPECIAL Opcode Encoding of FUNCLION Feld..........c.ooiiiiiiiiee s 318
Table A-4: MIPS32 REGIMM ENcoding Of It FIEld........c.ooieiiieece et 318
Table A-5: MIPS32 SPECIAL2 Encoding of FUNCLION FIEld...........ccooiiiiecececece e 318
Table A-6: MIPS32 SPECIAL 3 Encoding of Function Field for Release 2 of the Architecture............cccoccoveveeveneee. 318
Table A-7: MIPS32 MOV CI ENCOAING Of tf Bit......ccviiiiie ettt st 319
Table A-8: MIPS32 SRL Encoding Of SNift/ROELE..............ccoiiieiiic ettt 319
Table A-9: MIPS32 SRLV ENncoding Of Shift/ROLEEE............cciiieiiiieiiee et 319
Table A-10: MIPS32 BSHFL ENcoding Of SAFTEI. ..ot 319
Table A-11: MIPS32 COPO ENCOAiNG Of IS FIEId.c.ooiiieecece ettt 319
Table A-12: MIPS32 COPO Encoding of Function Field When rS=CO ... 320
Table A-13: MIPS32 COP1 ENCOdiNg Of IS FIEId.c.ooiiieeece ettt 320
Table A-14: MIPS32 COP1 Encoding of Function Field WheN IS=S.........ooviiicice e 320
Table A-15: MIPS32 COP1 Encoding of Function Field When rS=Docvvciicice e 321
Table A-16: MIPS32 COP1 Encoding of Function Field When rSEW OF L ..o 321
Table A-17: MIPS64 COP1 Encoding of Function Field When rS=PS ... 321
MIPS32® Architecture For Programmers Volume Il, Revision 2.50 vii

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

viii

Table A-18: MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, FUNction=MOVCFcccccceiiviieiieiece e 321

Table A-19: MIPS32 COP2 ENCOAiNG Of IS FIEIA.c.ooii ettt 322

Table A-20: MIPS64 COP1X Encoding of FUNCLION FIEld............c.ooiiiieeceeece e 322

Table A-21: Floating Point Unit Instruction FOrmat ENCOJINGS..........coveiiiieiicicce et 322
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS32® Architecture For Programmers Volume |1 comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS32®
Architecture

» Volume Il provides detailed descriptions of each instruction in the MIPS32® instruction set

* Volume Il describes the MIPS32® Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32® processor implementation

* Volume | V-a describes the MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS32® document set

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS32® Architecture
* Volume IV-d describes the SmartM I PS®A pplication-Specific Extension to the MIPS32® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

1.1.1 Italic Text
* isused for emphasis

* isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D, and PS

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text
* represents aterm that is being defined

* isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are not
programmabl e but accessible only to hardware)

* isused for ranges of humbers; the range isindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through 1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 1

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDI CTABL E and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDI CTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDI CTABL E operations may cause aresult to be generated or not. If aresult isgenerated,
itisUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source (memory
or internal state) which isinaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state whichis
inaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user mode
must not access memory or internal state that isonly accessiblein Kernel Mode or Debug Mode or in another process

» UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

» UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which thereis
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDI CTABL E values, software may depend on the fact that asampling of an UNSTABLE valueresultsin alegal
transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

» Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

2 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

1.3 Special Symbolsin Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symboal Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.
Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
X Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) is used. If y isless than
y..Z z, this expression is an empty (zero length) bit string.
+ - 2's complement or floating point arithmetic: addition, subtraction
#, X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement |ess-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwiselogical OR
GPRLEN Thelength in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] isawayszero. In Release 2 of the Architecture, GPR[X]
is ashort-hand notation for SGPR] SRSCtlcgg, X].
SGPR[sX] ISréR;eRI ease 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
[sX] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), genera register x

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z Coprocessor unit z condition signal
Xlat[x] Trand ation of the MIPS16e GPR number x into the corresponding 32-bit GPR number
Endian mode as configured at chip reset (0 —Little-Endian, 1 — Big-Endian). Specifies the endianness of the
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.
The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by setting the RE bit in the Satus register. Thus, BigeEndianCPU may be computed

as (BigendianMem X OR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. Thisfeature is available in User mode only, and
isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRgg and
User mode).

LLbit

Bit of virtual state used to specify operation for instructionsthat provide atomic read-modify-write. LLbit isset
when alinked load occurs and istested by the conditional store. Itiscleared, during other CPU operation, when
a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions.

1+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, al effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to atime
label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, theinstruction operation iswritten in sectionslabeled
with the instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to
occur. For example, an instruction may have aresult that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appearsto occur “at the sametime”
asthe effect of pseudocode statements|abeled | for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different
instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

The Program Counter value. During the instruction time of an instruction, thisis the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit M1PS16e instruction)
or 4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction
time of theinstruction in the branch delay dlot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains afull 32-bit address all of which are significant during a memory reference.

ISA Mode

In processors that implement the M1PS16e A pplication Specific Extension, the |SA Mode isasingle-bit register
that determines in which mode the processor is executing, as follows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MI1PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor O register on an exception.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning
PABITS Thenumber of physical address bitsimplemented is represented by the symbol PABITS As such if 36 physical
address bits were implemented, the size of the physical address space would be 2BITS = 23 hytes
Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRS). In MIPS32, the FPU has 32 32-bit
FPRsin which 64-bit data types are stored in even-odd pairs of FPRs. In M1PS64, the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.
FP32RegistersMode

In MIPS32 implementations, FP32Register sM odeisalwaysa0. MIPS64 implementations have acompatibility
mode in which the processor references the FPRs asiif it were a MIPS32 implementation. In such a case
FP32Register M ode is computed from the FR bit in the Satus register. If thisbit isa0, the processor operates
asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructionlnBranchD

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis false

ption, argument)

elaySlot if abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of abranch or jump.
Signal Exception(exce Causes an exception to be signaled, using the exception parameter as the type of exception and the argument

parameter as an exception-specific argument). Control does not return from this pseudocode function - the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manualsand additional information about MIPS products can befound at the MIPSURL.:

http://www.mips.com

Comments or questions on the MIPS32® Architecture or this document should be directed to

MIPS Architecture Group
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

6 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:
 “Instruction Fields’ on page 8

* “Instruction Descriptive Name and Mnemonic” on page 9

» “Format Field” on page 9

* “Purpose Field” on page 10

 “Description Field” on page 10

» “Restrictions Field” on page 10

* “Operation Field” on page 11

» “Exceptions Field” on page 11

» “Programming Notes and |mplementation Notes Fields’ on page 11

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

Instruction Mnemonic

and Descriptive Name —# Example Instruction Name EXAMPLE

Instruction encodin

constant and variabgfe\ 31 26 25 21 20 16 15 11 10 6 5 0

field names and values SPECIAL rs rt rd 0 EXAMPLE
000000 00000 000000

Architecture level at 6 5 5 5 5 6

which instruction was

defined/redefined and

assembler format(s) fOI'/V Format: EXAMPLE rd, rs,rt MI1PS32

each definition
Short description ——————» Purpose: to execute an EXAMPLE op

Symbolic descripti - N
ymbolic description Description: GPR[rd] « GPR([r]s exampleop GPR]rt]

Full description of / This section describes the operation of the instruction in text, tables, and
instruction operation illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions on o
instruction and Restrictions:

operands Thissection listsany restrictionsfor the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed |ocations.

High-level language .
description ofinstruction\> Oper.atlon:. . .) o
operation * This section describes the operation of an instructionin a*/
[* high-level pseudo-language. It is precise in ways that the */
[* Description section is not, but is also missing information */
[* that is hard to expressin pseudocode.*/
temp ¢ GPR[rs] exampleop GPR[rt]
GPR[rd] ¢« temp

Exceptions that

. . Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers —— g Programming Notes;
Information useful to programmers, but not necessary to describe the operation of
the instruction

Notes for implementors .)
~———® |mplementation Notes:
Like Programming Notes, except for processor implementors

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

8 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2-2).
Constant valuesin afield are shown in binary below the symbolic or hexadecimal value.

» All variablefields are listed with the lowercase names used in the instruction description (rs, rt and rd in Figure 2-2).

* Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2-2). If
such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2-3.

Add Word ADD

Figure 2-3 Example of I nstruction Descriptive Name and M nemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
giveninthe Format field. If theinstruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: 2pp rd, rs, rt MIPS32

Figure 2-4 Example of Instruction For mat

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
theinstruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 9

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If aone-line symbolic description of the instruction isfeasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: GPR[rd] < GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit result.

* If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

« If the addition does not overflow, the 32-bit result is placed into GPR rd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “ CP1 register fd”
isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /Satus
register.

2.1.6 RestrictionsField
The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictionsfall into one
of the following six categories:
« Vaid valuesfor instruction fields (for example, see floating point ADD.fmt)
e ALIGNMENT requirements for memory addresses (for example, see LW)
« Valid values of operands (for example, see DADD)
« Valid operand formats (for example, see floating point ADD.fmt)

 Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

* Valid memory access types (for example, see LL/SC)

10 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

Restrictions:
None

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. Thisformal description complements the Description section; it is not completein itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

temp < (GPR[rsls;||GPR[rsls; o) + (GPR[rtlsq||GPR[rtlss o)
if tempsz, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« temp
endif

Figure 2-8 Example of I nstruction Operation

See Section 2.2, "Operation Section Notation and Functions' on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

The Exceptionsfield lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although aBus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship

between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

Aninstruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.9 Programming Notes and I mplementation Notes Fields

MIPS32® Architecture For Programmers Volume I, Revision 2.50 11

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of I nstruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level 1anguage notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 12

 “Pseudocode Functions’ on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

» “Coprocessor General Register Access Functions’ on page 12
» “Memory Operation Functions’ on page 14
» “Hoating Point Functions’ on page 17

» “Miscellaneous Functions’” on page 20

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and how
a coprocessor supplies aword or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.

12 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during aload
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in

coprocessor general register rt.

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW
Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_L D function defines the action taken by coprocessor z when supplied with adoubleword from memory during
aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general register rt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD
Figure 2-12 COP_L D Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.

dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW
Figure 2-13 COP_SW Pseudocode Function

MIPS32® Architecture For Programmers Volume I, Revision 2.50 13

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

14

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

Coprocessor Operation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* zZ: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-15 Coprocessor Oper ation Pseudocode Function

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2-1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-hit processors) that are used can be determined directly from
the AccessLength and the two or three low-order hits of the address.

AddressTranslation

The AddressTranglation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceis to Instructions or Data (1orD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address
isin one of the unmapped address spaces, the physical address and CCA are determined directly by the virtual address.
If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU determines the

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

physical address and access type; if the required trandation is not present in the TLB or the desired accessis not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ¢« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* ITorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-16 AddressTranslation Pseudocode Function

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLength indicate which of the byteswithin MemElem need to be passed to the processor. If the memory accesstype
of the reference is uncached, only the referenced bytes are read from memory and marked as valid within the memory
element. If the accesstype is cached but the datais not present in cache, an implementati on-specific size and alignment
block of memory isread and loaded into the cache to satisfy aload reference. At a minimum, this block isthe entire
memory element.

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* VvAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-17 LoadM emory Pseudocode Function

StoreMemory
The StoreMemory function stores a value to memory.
The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main memory)

as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data for an aligned, fixed-width
memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are

MIPS32® Architecture For Programmers Volume I, Revision 2.50 15

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

16

actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLength field indicate
which of the bytes within the MemElem data should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA:
/‘k

Cache Coherence Algorithm, the method used to access */
caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem:
/*

/*

/*

/*

/*

/* pAddr:
/* vAddr:

Data in the width and alignment of a memory element. */

The width is the same size as the CPU general */

purpose register, either 4 or 8 bytes, */

aligned on a 4- or 8-byte boundary. For a */
partial-memory-element store, only the bytes that will be*/
stored must be valid.*/

physical address */

virtual address */

endfunction StoreMemory

Prefetch

Figure 2-18 StoreMemory Pseudocode Function

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */

/* pAddr: physical address */

/* vAddr: virtual address */

/* DATA: 1Indicates that access is for DATA */

/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-19 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessL ength Specificationsfor Loads/Stores

AccessL ength Name | Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-20 SyncOper ation Pseudocode Function

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are
interpreted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from
aload (uninterpreted), it isvalid to interpret the value in that format (but not to interpret it in a different format).

MIPS32® Architecture For Programmers Volume I, Revision 2.50 17

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

value ¢« ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PSS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR « FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR « FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR <« FPR[fpr]
endif

DEFAULT:
valueFPR ¢« UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-21 ValueFPR Pseudocode Function

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by acomputational or move operation. Thisbinary representation isvisibleto store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.

18 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

StoreFPR
StoreFPR (fpr, fmt, value)
/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* s, D, w, L, PsS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */

/* value:

The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */

/* is not known as, for example,

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] <« value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpry # 0) then
UNPREDICTABLE
else
FPR[fpr]

in LWC1 and LDC1 */

< UNPREDICTABLE’? || value;;

FPR[fpr+l] <« UNPREDICTABLE’? || valueg; 3,

endif
else
FPR[fpr] <« wvalue
endif
L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif
endcase

endfunction StoreFPR

Figure 2-22 StoreFPR Pseudocode Function

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

19

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

CheckFPEXxception

CheckFPException ()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSRq14. .15 and FCSRqq. . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

Figure 2-23 Check FPException Pseudocode Function

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
tf «<FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */

if cc = 0 then

FPConditionCode ¢« FCSRj3
else

FPConditionCode ¢ FCSRygicc
endif

endfunction FPConditionCode

Figure 2-24 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode (cc)
if cc = 0 then

FCSR ¢« FCSR3; 44 || tf || FCSRyy o
else
FCSR « FCSRBl..25+cc || tf || FCSR23+CC..0

endif

endfunction SetFPConditionCode

Figure 2-25 SetFPConditionCode Pseudocode Function

2.2.2.4 Miscellaneous Functions
This section lists miscellaneous functions not covered in previous sections.
Signal Exception

The Signal Exception function signals an exception condition.

20 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-26 SignalException Pseudocode Function

Signal DebugBreakpointException

The Signal DebugBreakpointException function signal s a condition that causes entry into Debug Mode from non-Debug
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalDebugBreakpointException ()

endfunction SignalDebugBreakpointException

Figure 2-27 Signal DebugBreakpointException Pseudocode Function

Signal DebugM odeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalDebugModeBreakpointException ()

endfunction SignalDebugModeBreakpointException

Figure 2-28 SignalDebugM odeBreak pointException Pseudocode Function

NullifyCurrentl nstruction
The NullifyCurrentlnstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentInstruction ()

endfunction NullifyCurrentInstruction

Figure 2-29 NullifyCurrentInstruction PseudoCode Function

MIPS32® Architecture For Programmers Volume I, Revision 2.50 21
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the M1PS16e ASE. The
function returns TRUE if theinstruction at vAddr isexecuted in ajump delay slot. A jump delay slot alwaysimmediately
followsaJr, JAL, JALR, or JALX instruction.

JumpDelaySlot (vAddr)
/* vAddr:Virtual address */
endfunction JumpDelaySlot
Figure 2-30 JumpDelaySlot Pseudocode Function
PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(3i-i)..0 || 0%)
endif
endfor

PolyMult « temp

endfunction PolyMult

Figure 2-31 PolyM ult Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asinglefield has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, al variable subfields in an instruction format (such asfs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an aliasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase sinceit refersto a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDM X, and MIPS16e
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 22 for a description of the op and function subfields.

22 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

The MIPS32® Instruction Set

3.1 Compliance and Subsetting

To be compliant with the MIPS32 Architecture, designs must implement a set of required features, as described in this
document set. To allow flexibility in implementations, the MIPS32 Architecture does provide subsetting rules. An
implementation that follows these rules is compliant with the M1PS32 Architecture as long as it adheres strictly to the
rules, and fully implements the remaining instructions.Supersetting of the MIPS32 Architecture is only allowed by
adding functions to the SPECIAL2 major opcode, by adding control for co-processors viathe COP2, LWC2, S\WC2,
LDC2, and/or SDC2, and/or COP3 opcodes, or viathe addition of approved Application Specific Extensions. Note,
however, that a decision to use the COP3 opcode in an implementation of the MIPS32 Architecture precludes a
compatible upgrade to the M1PS64 Architecture because the COP3 opcode is used as part of the floating point ISA in
the MIPS64 Architecture.

Theinstruction set subsetting rules are as follows:

All CPU instructions must be implemented - no subsetting is allowed.

The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determine if an FPU isimplemented by checking the state of the FP bit in the Configl CPO register. If
the FPU isimplemented, it must include S, D, and W formats, operate instructions, and all supporting instructions.
Software may determine which FPU data types are implemented by checking the appropriate bit in the FIR CP1
register. The following allowable FPU subsets are compliant with the MIPS32 architecture:

— NoFPU
— FPU with S, D, and W formats and all supporting instructions

Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 isimplemented by
checking the state of the C2 hit in the Configl CPO register. If Coprocessor 2 isimplemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be omitted
on an instruction-by-instruction basis.

Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of the Satus register must be ignored on
write and read as zero.

The standard TL B-based memory management unit may be replaced with asimpler MMU (e.g., a Fixed Mapping
MMU). If thisis done, the rest of the interface to the Privileged Resource Architecture must be preserved. If a
TLB-based memory management unit isimplemented, it must be the standard TL B-based MMU as described in the
Privileged Resource Architecture chapter. Software may determine the type of the MMU by checking the MT fieldin
the Config CPO register.

The Privileged Resource Architecture includes several implementation options and may be subsetted in accordance
with those options.

Instruction, CPO Register, and CP1 Control Register fields that are marked “Reserved” or shown as“0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

Supported ASEs are optional and may be subsetted out. If most cases, software may determine if asupported ASE is
implemented by checking the appropriate bit in the Configl or Config3 CPO register. If they are implemented, they
must implement the entire ISA applicable to the component, or implement subsets that are approved by the ASE
specifications.

EJTAG is optiona and may be subsetted out. If it isimplemented, it must implement only those subsets that are
approved by the EJTAG specification.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 23

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32® Instruction Set

« If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

3.2 Alphabetical List of Instructions

Table 3-1 through Table 3-24 provide alist of instructions grouped by category. Individual instruction descriptions
follow the tables, arranged in alphabetical order.

Table 3-1 CPU Arithmetic I nstructions

Mnemonic Instruction
ADD Add Word
ADDI Add Immediate Word
ADDIU Add Immediate Unsigned Word
ADDU Add Unsigned Word
CLO Count Leading Onesin Word
CLz Count Leading Zerosin Word
DIV Divide Word
DIVU Divide Unsigned Word
MADD Multiply and Add Word to Hi, Lo
MADDU Multiply and Add Unsigned Word to Hi, Lo
MSUB Multiply and Subtract Word to Hi, Lo
MSUBU Multiply and Subtract Unsigned Word to Hi, Lo
MUL Multiply Word to GPR
MULT Multiply Word
MULTU Multiply Unsigned Word
SEB Sign-Extend Byte Release 2 Only
SEH Sign-Extend Halftword Release 2 Only
SLT Set on Less Than
SLTI Set on Less Than Immediate
SLTIU Set on Less Than Immediate Unsigned
SLTU Set on Less Than Unsigned
SuUB Subtract Word
SUBU Subtract Unsigned Word

Table 3-2 CPU Branch and Jump Instructions

Mnemonic Instruction

B Unconditional Branch

24 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3-2 CPU Branch and Jump I nstructions

Mnemonic Instruction
BAL Branch and Link
BEQ Branch on Equal
BGEZ Branch on Greater Than or Equal to Zero
BGEZAL Branch on Greater Than or Equal to Zero and Link
BGTZ Branch on Greater Than Zero
BLEZ Branch on Less Than or Equal to Zero
BLTZ Branch on Less Than Zero
BLTZAL Branch on Less Than Zero and Link
BNE Branch on Not Equal
J Jump
JAL Jump and Link
JALR Jump and Link Register
JALR.HB Jump and Link Register with Hazard Barrier Release 2 Only
JR Jump Register
JR.HB Jump Register with Hazard Barrier Release 2 Only
Table 3-3 CPU Instruction Control Instructions
Mnemonic Instruction
EHB Execution Hazard Barrier Release 2 Only
NOP No Operation
SSNOP Superscalar No Operation
Table 3-4 CPU Load, Store, and Memory Control Instructions
Mnemonic Instruction
LB Load Byte
LBU Load Byte Unsigned
LH Load Halfword
LHU Load Halfword Unsigned
LL Load Linked Word
LW Load Word
LWL Load Word L eft
LWR Load Word Right
PREF Prefetch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

25

Chapter 3 The MIPS32® Instruction Set

26

Table 3-4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction
SB Store Byte
SC Store Conditional Word
SH Store Halfword
SwW Store Word
SWL Store Word Left
SWR Store Word Right
SYNC Synchronize Shared Memory
SYNCI Synchronize Cachesto Make Instruction Writes Effective Release 2 Only
Table 3-5 CPU Logical Instructions
Mnemonic Instruction
AND And
ANDI And Immediate
LUI Load Upper Immediate
NOR Not Or
OR Or
ORI Or Immediate
XOR Exclusive Or
XORI Exclusive Or Immediate
Table 3-6 CPU Insert/Extract I nstructions
Mnemonic Instruction
EXT Extract Bit Field Release 2 Only
INS Insert Bit Field Release 2 Only
WSBH Word Swap Bytes Within Halfwords Release 2 Only
Table 3-7 CPU Move Instructions
Mnemonic Instruction
MFHI Move From HI Register
MFLO Move From LO Register
MOVF Move Conditional on Floating Point False
MOVN Move Conditional on Not Zero

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3-7 CPU Move I nstructions

Mnemonic Instruction
MOVT Move Conditional on Floating Point True
MOVZ Move Conditional on Zero
MTHI Move To HI Register
MTLO Move To LO Register
RDHWR Read Hardware Register Release 2 Only
Table 3-8 CPU Shift Instructions
Mnemonic Instruction
ROTR Rotate Word Right Release 2 Only
ROTRV Rotate Word Right Variable Release 2 Only
SLL Shift Word Left Logical
SLLV Shift Word Left Logical Variable
SRA Shift Word Right Arithmetic
SRAV Shift Word Right Arithmetic Variable
SRL Shift Word Right Logical
SRLV Shift Word Right Logical Variable
Table 3-9 CPU Trap Instructions
Mnemonic Instruction
BREAK Breakpoint
SYSCALL System Call
TEQ Trap if Equal
TEQI Trap if Equal Immediate
TGE Trap if Greater or Equal
TGEI Trap if Greater of Equal Immediate
TGEIU Trap if Greater or Equal Immediate Unsigned
TGEU Trap if Greater or Equal Unsigned
TLT Trap if Less Than
TLTI Trap if Less Than Immediate
TLTIU Trap if Less Than Immediate Unsigned
TLTU Trap if Less Than Unsigned
TNE Trap if Not Equal
TNEI Trap if Not Equal Immediate

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

27

Chapter 3 The MIPS32® Instruction Set

28

Table 3-10 Obsolete! CPU Branch Instructions

Mnemonic Instruction
BEQL Branch on Equal Likely
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely
BGEZL Branch on Greater Than or Equal to Zero Likely
BGTZL Branch on Greater Than Zero Likely
BLEZL Branch on Less Than or Equal to Zero Likely
BLTZALL Branch on Less Than Zero and Link Likely
BLTZL Branch on Less Than Zero Likely
BNEL Branch on Not Equal Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from

afuturerevision of the MIPS32 architecture.

Table 3-11 FPU Arithmetic I nstructions

Mnemonic Instruction
ABS.fmt Floating Point Absolute Value
ADD.fmt Floating Point Add
DIV.fmt Floating Point Divide
MADD.fmt Floating Point Multiply Add
MSUB.fmt Floating Point Multiply Subtract
MUL.fmt Floating Point Multiply
NEG.fmt Floating Point Negate
NMADD.fmt Floating Point Negative Multiply Add
NMSUB.fmt Floating Point Negative Multiply Subtract
RECIPfmt Reciprocal Approximation
RSQRT.fmt Reciprocal Square Root Approximation
SQRT.fmt Floating Point Square Root
SUB.fmt Floating Point Subtract

Table 3-12 FPU Branch Instructions

Mnemonic Instruction
BC1F Branch on FP False
BC1T Branch on FP True

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3-13 FPU Compare I nstructions

Mnemonic Instruction
C.cond.fmt Floating Point Compare
Table 3-14 FPU Convert Instructions

Mnemonic Instruction
ALNV.PS Floating Point Align Variable 64-bit FPU Only
CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point 64-bit FPU Only
CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point
CVT.D.fmt Floating Point Convert to Double Floating Point
CVT.L.fmt Floating Point Convert to Long Fixed Point 64-hit FPU Only
CVT.PS.S Floating Point Convert Pair to Paired Single 64-bit FPU Only
CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point 64-bit FPU Only
CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point 64-bit FPU Only
CVT.Sfmt Floating Point Convert to Single Floating Point
CVT.W.fmt Floating Point Convert to Word Fixed Point
FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point 64-hit FPU Only
FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point
PLL.PS Pair Lower Lower 64-bit FPU Only
PLU.PS Pair Lower Upper 64-bit FPU Only
PUL.PS Pair Upper Lower 64-bit FPU Only
PUU.PS Pair Upper Upper 64-hit FPU Only
ROUND.L.fmt Floating Point Round to Long Fixed Point 64-hit FPU Only
ROUND.W.fmt | Floating Point Round to Word Fixed Point
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point 64-bit FPU Only
TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

Table 3-15 FPU L oad, Store, and Memory Control Instructions

Mnemonic Instruction
LDC1 Load Doubleword to Floating Point
LDXC1 Load Doubleword Indexed to Floating Point 64-hit FPU Only
LUXC1 Load Doubleword Indexed Unaligned to Floating Point 64-bit FPU Only
LwCi Load Word to Floating Point

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

29

Chapter 3 The MIPS32® Instruction Set

Table 3-15 FPU L oad, Store, and Memory Control I nstructions

Mnemonic Instruction
LWXC1 Load Word Indexed to Floating Point 64-bit FPU Only
PREFX Prefetch Indexed
SDC1 Store Doubleword from Floating Point
SDXC1 Store Doubleword Indexed from Floating Point 64-hit FPU Only
SUXC1 Store Doubleword Indexed Unaligned from Floating Point 64-hit FPU Only
SWC1 Store Word from Floating Point
SWXC1 Store Word Indexed from Floating Point 64-bit FPU Only
Table 3-16 FPU Move I nstructions
Mnemonic Instruction
CFC1 Move Control Word from Floating Point
CTC1 Move Control Word to Floating Point
MFC1 Move Word from Floating Point
MFHC1 Move Word from High Half of Floating Point Register Release 2 Only
MOV.fmt Floating Point Move
MOV FEfmt Floating Point Move Conditional on Floating Point False
MOVN.fmt Floating Point Move Conditional on Not Zero
MOVT.fmt Floating Point Move Conditional on Floating Point True
MOVZ.fmt Floating Point Move Conditional on Zero
MTC1 Move Word to Floating Point
MTHC1 Move Word to High Half of Floating Point Register Release 2 Only
Table 3-17 Obsolete! FPU Branch I nstructions
Mnemonic Instruction
BC1FL Branch on FP False Likely
BC1TL Branch on FP True Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
afuturerevision of the MIPS32 architecture.

Table 3-18 Coprocessor Branch I nstructions

M nemonic Instruction
BC2F Branch on COP2 False
BC2T Branch on COP2 True
30 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions

Table 3-19 Coprocessor Execute I nstructions

M nemonic Instruction
COP2 Coprocessor Operation to Coprocessor 2

Table 3-20 Coprocessor Load and Store I nstructions

Mnemonic Instruction

LDC2 Load Doubleword to Coprocessor 2

LwceC2 Load Word to Coprocessor 2

SDC2 Store Doubleword from Coprocessor 2

SWC2 Store Word from Coprocessor 2

Table 3-21 Coprocessor Move I nstructions
Mnemonic Instruction
CFC2 Move Control Word from Coprocessor 2
CTC2 Move Control Word to Coprocessor 2
MFC2 Move Word from Coprocessor 2
MFHC2 Move Word from High Half of Coprocessor 2 Register Release 2 Only
MTC2 Move Word to Coprocessor 2
MTHC2 Move Word to High Half of Coprocessor 2 Register Release 2 Only
Table 3-22 Obsolete! Coprocessor Branch Instructions
Mnemonic Instruction
BC2FL Branch on COP2 False Likely
BC2TL Branch on COP2 True Likely
1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
afuture revision of the MIPS32 architecture.
Table 3-23 Privileged Instructions
Mnemonic Instruction

CACHE Perform Cache Operation
DI Disable Interrupts Release 2 Only
El Enable Interrupts Release 2 Only
ERET Exception Return
MFCO Move from Coprocessor 0
MTCO Move to Coprocessor 0

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

31

Chapter 3 The MIPS32® Instruction Set

Table 3-23 Privileged Instructions

Mnemonic Instruction
RDPGPR Read GPR from Previous Shadow Set Release 2 Only
TLBP Probe TLB for Matching Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
WAIT Enter Standby Mode
WRPGPR Write GPR to Previous Shadow Set Release 2 Only

Table 3-24 EJTAG Instructions

M nemonic Instruction
DERET Debug Exception Return
SDBBP Software Debug Breakpoint
32 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Absolute Value ABS.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 ABS

fmt fs fd
010001 00000 000101
6 5 5 5 5 6
Format: aBs.s fd, fs MIPS32
ABS.D fd, fs MIPS32
ABS.PS fd, fs MIPS64, MIPS32 Release 2
Purpose:

To compute the absolute value of an FP value

Description: FPR[fd] « abs (FPR[fs])

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are values in format fmt.
ABS.PS takes the absolute value of the two values in FPR fs independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bitsif no exception is taken.
This operation is arithmetic; a NaN operand signalsinvalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of ABS.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

MIPS32® Architecture For Programmers Volume I, Revision 2.50 33
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Add Word ADD

34

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6
Format: apD rd, rs, rt MIPS32
Purpose:

To add 32-hit integers. If an overflow occurs, then trap.

Description: GPR[rd] ¢« GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit result.

« |If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

« If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:
None

Operation:

temp ¢« (GPR[rsls;||GPRIrsls;. o) + (GPR[rtls;||GPRIrtls;. g)
if temps;, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temp
endif

Exceptions:
Integer Overflow

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Add ADD.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 ADD

fmt ft fs fd
010001 000000
6 5 5 5 5 6
Format: app.s fd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32
ADD.PS fd, fs, ft MIPS64, MIPS32 Release 2
Purpose:

To add floating point values

Description: FPR[fd] « FPR[fs] + FPR[ft]

Thevauein FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format ft; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of ADD.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +¢, ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 35
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Word ADDI

36

31 26 25 21 20 16 15 0
ADDI
rs rt immediate
001000
6 5 5 16
Format: ADDI rt, rs, immediate MIPS32
Purpose:

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] ~ GPR[rs] + immediate
The 16-bit signed immediate is added to the 32-bit value in GPR rsto produce a 32-bit result.

« If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

« If the addition does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:
None

Operation:

temp ¢« (GPR[rsls;||GPR[rsls;.) + sign_extend(immediate)
if tempsz, # temps; then
SignalException (IntegerOverflow)
else
GPR[rt] « temp
endif
Exceptions:

Integer Overflow

Programming Notes:
ADDIU performs the same arithmetic operation but does not trap on overflow.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word ADDIU

31 26 25 21 20 16 15 0
ADDIU
rs rt immediate
001001
6 5 5 16
Format: ADDIU rt, rs, immediate MIPS32
Purpose:

To add a constant to a 32-bit integer

Description: GPR[rt] ¢« GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:

temp ¢ GPR[rs] + sign_extend(immediate)
GPR[rt]« temp

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 37
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Add Unsigned Word ADDU

38

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADDU
rs rt rd
000000 00000 100001
6 5 5 5 5 6
Format: aAppU rd, rs, rt MIPS32
Purpose:

To add 32-bit integers

Description: GPR[rd] ¢« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:

temp ¢ GPR[rs] + GPR[rt]
GPR[rd] ¢« temp

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Align Variable

ALNV.PS

31 26 25 21 20 16 15 11 10
COP1X ALNV.PS
rs ft fs fd
010011 011110
6 5 5 5 5 6
Format: ALNV.PS fd, ft, rs MIPS64, MIPS32 Release 2
Purpose:

To align amisaligned pair of paired single values

Description: FPR[fd] « ByteAlign(GPR[rsl, .o, FPR[fs], FPR[ft])

FPR fsis concatenated with FPR ft and this value is funnel-shifted by GPR rs, g bytes, and written into FPR fd. If

GPRrs, ¢is0, FPR fd receives FPR fs. If GPR rs,_q is4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper half of
FPR fd receives the lower half of the paired single value in fs, and the lower half of FPR fd receives the upper half of

the paired single value in FPR ft.

Figure 3-1 Example of an ALNV.PS Operation
FPR[fs]

FPRft]

63

The moveis nonarithmetic; it causes no |EEE 754 exceptions.

32 31

o N

63

32 31

63

32 31

FPR[fd]

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1

o

39

Floating Point Align Variable (cont.) ALNV.PS

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

If GPRrs; g are non-zero, the results are UNPREDICTABLE.
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPRI[rsl, o = 0 then

StoreFPR(fd, PS,ValueFPR(fs,PS))
else if GPR[rsl, o # 4 then

UNPREDICTABLE
else if BigEndianCPU then

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft,PS)gs 35)
else

StoreFPR(fd, PS, ValueFPR(ft, PS)i3; o || ValueFPR(fs,PS)g;. 35)
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PSisdesigned to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:
/* Copy T2 bytes (a multiple of 16) of data TO to T1l, TO unaligned, Tl aligned.
Reads one dw beyond the end of TO. */

LUXC1 FO, 0(TO0) /* set up by reading lst src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, TO, 8 /* base for odd dw loads */
ADDIU T5, Tl, -8/* base for odd dw stores */

LOOP:
LUXC1 F1l, T3(T4)
ALNV.PS F2, FO, F1, TO/* switch FO, Fl1l for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 FO, T3(TO0)
ALNV.PS F2, Fl1, FO, TO/* switch F1l, FO for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)

DONE :

40 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Align Variable (cont.)

ALNV.PS

ALNV.PSisaso useful with SUXCL1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = TO[i] + F8,
CVT.PS.S F8, F8,

/* Loop header computes 1lst pair into FO,
/* misaligned */

TO0 aligned, T1 unaligned. */
F8/* make addend paired-single */

stores high half if T1 */

LOOP:
LDC1 F2, T3(T4)/* get TO[i+2]/TO[i+3] */
ADD.PS Fl, F2, F8/* compute T1[i+2]/T1[i+3] */
ALNV.PS F3, FO, Fl1, Tl1/* align to dst memory */
SUXC1 F3, T3(T1l)/* store to T1[i+0]/T1[i+41] */
ADDIU T3, 16 /* 1 =1 + 4 */
LDC1 F2, T3(T0)/* get TO[i+0]/TO[i+1] */
ADD.PS FO, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, Fl1, FO, T1/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+43] */

/* Loop trailer stores all or half of FO,

MIPS32® Architecture For Programmers Volume I, Revision 2.50

depending on Tl alignment */

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

41

And

42

AND
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 AND
rs rt rd
000000 00000 100100
6 5 5 5 5 6
Format: AND rd, rs, rt MIPS32
Purpose:

To do a bitwise logical AND

Description: GPR[rd] ¢« GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd]

Exceptions:

None

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

¢« GPR[rs] and GPR[rt]

MIPS32® Architecture For Programmers Volume II, Revision 2.50

And Immediate ANDI

31 26 25 21 20 16 15 0

ANDI
rs rt immediate
001100
6 5 5 16

Format: ANDI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical AND with a constant

Description: GPR[rt] ¢ GPR[rs] AND immediate
The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin a bitwiselogical AND

operation. Theresult is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:

None

¢« GPR[rs] and zero_extend(immediate)

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

43

Unconditional Branch B

44

31 26 25 21 20 16 15 0
BEQ 0 0
offset
000100 00000 00000
6 5 5 16
Format: B offset Assembly Idiom

Purpose:
To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset « sign_extend(offset || 02)
I+1: PC « PC + target_offset

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is+ 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch and Link BAL

31 26 25 21 20 16 15 0
REGIMM 0 BGEZAL
offset
000001 00000 10001
6 5 5 16
Format: BAL rs, offset Assembly Idiom
Purpose:

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset isthe assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BGEZAL rO0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
re-executed. The result of executing such an instruction is UNPREDICTABLE. Thisrestriction permits an exception
handler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

Operation:
I: target_offset <« sign_extend(offset || 02)
GPR[31] « PC + 8
I+1: PC <« PC + target_offset
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 45
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP False BC1F

46

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000
6 5 3 1 16
Format: BC1F offset (cc = 0 implied) MIPS32
BC1F cc, offset MIPS32

Purpose:
To test an FP condition code and do a PC-relative conditional branch

Desmﬂpﬁon:if FPConditionCode(cc) = 0 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit ccisfalse (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ¢« FPConditionCode(cc) = 0
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC <« PC + target_offset
endif

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP False (cont.) BC1F

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical I nformation:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C bit in the FP Control/Status register. MIPS 1, 11, and Il architectures must have the CC
field set to O, which isimplied by the first format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPSI, 11, and 111 architectures there must be at |east one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 47
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP False Likely BC1FL

48

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000 1
6 5 3 1 16
Format: BC1FL offset (cc = 0 implied) MIPS32
BC1FL cc, offset MIPS32

Purpose:

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Desmﬂpﬁon:if FPConditionCode(cc) = 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code hit cc is false (0), the program branches to the effective target address after the instruction in the delay
dot is executed. If the branch is not taken, the instruction in the delay ot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.
I: condition ¢« FPConditionCode(cc) = 0
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP False Likely (cont.) BC1FL

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by thefirst format in the “Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS Il andlll architectionrs there must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 49
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP True

50

BC1T
31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000
6 5 3 16
Format: BC1T offset (cc = 0 implied) MIPS32
BC1T cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Desmﬂpﬁon:if FPConditionCode(cc) = 1 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code hit cc istrue (1), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for

tf and nd.
I: condition ¢« FPConditionCode(cc)
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC <« PC + target_offset
endif

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP True (cont.) BC1T

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical I nformation:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C bit in the FP Control/Status register. MIPS 1, 11, and Il architectures must have the CC
field set to O, which isimplied by the first format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPS |, I1, and Il architectures there must be at |east one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 51
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP True Likely BC1TL

52

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
cc offset
010001 01000 1(1
6 5 3 16
Format: BciTL offset (cc = 0 implied) MIPS32
BC1TL cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only if
the branch is taken.

Desmﬂpﬁon:if FPConditionCode(cc) = 1 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code hit cc istrue (1), the program branches to the effective target address after the instruction in the delay slot
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.
I: condition ¢« FPConditionCode(cc) = 1
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on FP True Likely (cont.) BC1TL

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BCLT instruction instead.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by thefirst format in the “Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS Il andlll architectionrs there must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 53
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False BC2F

54

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000
6 5 3 1 1 16
Format: BC2F offset (cc = 0 implied) MIPS32
BC2F cc, offset MIPS32

Purpose:
To test a COP2 condition code and do a PC-relative conditional branch

Description: if cop2Condition(cc) = 0 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition <« COP2Condition(cc) = 0
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC <« PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False Likely BC2FL

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000 1
6 5 3 1 1 16
Format: BC2FL offset (cc = 0 implied) MIPS32
BC2FL cc, offset MIPS32
Purpose:

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the delay slot
only if the branch is taken.

Desmﬂpﬁon:if COP2Condition(cc) = 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay dlot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf and nd.
I: condition <« COP2Condition(cc) = 0
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC <« PC + target_offset
else
NullifyCurrentInstruction ()
endif
MIPS32® Architecture For Programmers Volume I, Revision 2.50 55

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on COP2 False Likely (cont.) BC2FL

56

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2F instruction instead.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on COP2 True BC2T

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000 1
6 5 3 1 1 16
Format: BC2T offset (cc = 0 implied) MIPS32
BC2T cc, offset MIPS32
Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cop2Condition(cc) = 1 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for

tf and nd.
I: condition <« COP2Condition(cc) = 1
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC <« PC + target_offset
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 57
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on COP2 True Likely BC2TL

58

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
cc offset
010010 01000 1(1
6 5 3 1 1 16
Format: Bc2TL offset (cc = 0 implied) MIPS32
BC2TL cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Desmﬂpﬁon:if COP2Condition(cc) = 1 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay dlot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dlot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition <« COP2Condition(cc) = 1
target_offset « (offsets)CPREEN-(16+2) || offget || 02
I+1l: if condition then
PC <« PC + target_offset
else
NullifyCurrentInstruction ()
endif

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on COP2 True Likely (cont.) BC2TL

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2T instruction instead.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 59
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Equal BEQ

31 26 25 21 20 16 15 0
BEQ
rs rt offset
000100
6 5 5 16
Format: BEQ rs, rt, offset MIPS32
Purpose:

60

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] = GPR[rt] then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
slot is executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset « sign_extend(offset || 02)
condition <« (GPR[rs] = GPRI[rt])
I+1l: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-hit signed instruction offset, the conditional branch range is+ 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, rO offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Equal Likely BEQL

31 26 25 21 20 16 15 0
BEQL
rs rt offset
010100
6 5 5 16
Format: BEQL rs, rt, offset MIPS32
Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] = GPR[rt] then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction in the delay dlot is
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset « sign_extend(offset || 02)
condition <« (GPR[rs] = GPRI[rt])
I+1l: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif

Exceptions:
None

MIPS32® Architecture For Programmers Volume I, Revision 2.50 61
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Equal Likely (cont.) BEQL

62

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BEQ instruction instead.

Historical Information:
Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero BGEZ

31 26 25 21 20 16 15 0
REGIMM BGEZ
rs offset
000001 00001
6 5 5 16
Format: BGEZ rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] =0 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition < GPR[rs] > QCFRLEN
I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 63
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero and Link BGEZAL

31 26 25 21 20 16 15 0
REGIMM BGEZAL
rs offset
000001 10001
6 5 5 16
Format: BGEZAL rs, offset MIPS32

64

Purpose:
To test a GPR then do a PC-relative conditional procedure call

Dexnpﬁon:if GPR[rs] 20 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Operation:
I: target_offset <« sign_extend(offset || 02)
condition ¢« GPR[rs] > QCPRLEN
GPR[31] « PC + 8
I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL isused in amanner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL

31 26 25 21 20 16 15 0
REGIMM BGEZALL
rs offset
000001 10011
6 5 5 16
Format: BGEZALL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Dexnpﬁon:if GPR[rs] =20 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay dot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:

I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] > QCFRLEN
GPR[31] « PC + 8

I+1: if condition then
PC« PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None
MIPS32® Architecture For Programmers Volume I, Revision 2.50 65

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero and Link Likely (con’t.) BGEZALL

66

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZAL instruction instead.

Historical I nformation:

In the MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero Likely BGEZL

31 26 25 21 20 16 15 0
REGIMM BGEZL
rs offset
000001 00011
6 5 5 16
Format: BGEZL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] = 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] = QCFRLEN
I+1l: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None
MIPS32® Architecture For Programmers Volume I, Revision 2.50 67

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than or Equal to Zero Likely (cont.) BGEZL

68

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZ instruction instead.

Historical Information:
Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than Zero BGTZ

31 26 25 21 20 16 15 0
BGTZ 0
rs offset
000111 00000
6 5 5 16
Format: BGTZ rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] > 0 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: target_offset « sign_extend(offset || 02)
condition <« GPR[rs] > (QCFRLEN
I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 69
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than Zero Likely BGTZL

70

31 26 25 21 20 16 15 0
BGTZL 0
rs offset
010111 00000
6 5 5 16
Format: BGTZL rs, offset MIPS32

Purpose:
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset « sign_extend(offset || 02)
condition ¢« GPR[rs] > (QGPRLEN
I+1l: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Greater Than Zero Likely (cont.) BGTZL

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGTZ instruction instead.

Historical Information:
Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 71
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than or Equal to Zero BLEZ

72

31 26 25 21 20 16 15 0
BLEZ 0
rs offset
000110 00000
6 5 5 16
Format: BLEZ rs, offset MIPS32

Purpose:
To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] < 0 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < QCFRLEN
I+1l: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than or Equal to Zero Likely BLEZL

31 26 25 21 20 16 15 0
BLEZL 0
rs offset
010110 00000
6 5 5 16
Format: BLEZL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay dlot is

not executed.
Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < QCFRLEN
I+1l: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None
MIPS32® Architecture For Programmers Volume I, Revision 2.50 73

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than or Equal to Zero Likely (cont.) BLEZL

74

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLEZ instruction instead.

Historical Information:
Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero BLTZ

31 26 25 21 20 16 15 0
REGIMM BLTZ
rs offset
000001 00000
6 5 5 16
Format: BLTZ rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] < 0 then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dot is executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < QGPRLEN
I+1: if condition then
PC « PC + target_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 75
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link BLTZAL

76

31 26 25 21 20 16 15 0
REGIMM BLTZAL
rs offset
000001 10000
6 5 5 16
Format: BLTZAL rs, offset MIPS32

Purpose:
To test a GPR then do a PC-relative conditional procedure call

Desxipﬁon:if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dlot is executed.
Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay dot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset <« sign_extend(offset || 02)
condition ¢« GPR[rs] < OQCPRLEN
GPR[31] « PC + 8
I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link Likely BLTZALL

31 26 25 21 20 16 15 0
REGIMM BLTZALL
rs offset
000001 10010
6 5 5 16
Format: BLTZALL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Desmﬂpﬁon:if GPR[rs] < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay dot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < OQCPRLEN
GPR[31] « PC + 8

I+1: if condition then
PC« PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None
MIPS32® Architecture For Programmers Volume I, Revision 2.50 77

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL

78

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZAL instruction instead.

Historical I nformation:

In the MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero Likely BLTZL

31 26 25 21 20 16 15 0
REGIMM BLTZL
rs offset
000001 00010
6 5 5 16
Format: BLTZL rs, offset MIPS32
Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: target_offset « sign_extend(offset || 02)
condition ¢« GPR[rs] < OQGFRLEN
I+1l: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None
MIPS32® Architecture For Programmers Volume I, Revision 2.50 79

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Less Than Zero Likely (cont.) BLTZL

80

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZ instruction instead.

Historical Information:
Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal BNE

31 26 25 21 20 16 15 0
BNE
rs rt offset
000101
6 5 5 16
Format: BNE rs, rt, offset MIPS32
Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] # GPR[rt] then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay dot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: target_offset « sign_extend(offset || 02)
condition ¢« (GPR[rs] # GPR[rt])
I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 81
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal Likely BNEL

82

31 26 25 21 20 16 15 0
BNEL
rs rt offset
010101
6 5 5 16
Format: BNEL rs, rt, offset MIPS32
Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] # GPR[rt] then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset « sign_extend(offset || 02)
condition <« (GPR[rs] # GPR[rt])
I+1l: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal Likely (cont.) BNEL

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BNE instruction instead.

Historical Information:
Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 83
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Breakpoint BREAK

84

31 26 25 6 5 0
SPECIAL BREAK
code
000000 001101
6 20 6
Format: BREAK MIPS32
Purpose:

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:
None

Operation:

SignalException (Breakpoint)

Exceptions:
Breakpoint

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0
cop1 Al FC
fmt ft fs cc 0 cond
010001 0 11
6 5 5 5 3 1 1 2 4
Format: C.cond.s fs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.PS fs, ft(cc = 0 implied) MIPS64, MIPS32 Release 2
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32
C.cond.PS cc, fs, ft MIPS64, MIPS32 Release 2
Purpose:

To compare FP values and record the Boolean result in a condition code

Description: FPUConditionCode(cc) « FPR[fs] compare cond FPR[ft]

Thevaluein FPR fsis compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by cond, ; istrue for the operand values, the result istrue; otherwise, the result isfalse. If
no exception istaken, the result is written into condition code CC; trueis 1 and falseis 0.

c.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the valuesisan SNaN, or conds is set and at least one of the valuesis a QNaN, an Invalid Operation condi-
tion israised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the |EEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of theinstruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

Logica negation of acompare result allows eight distinct comparisons to test for the 16 predicates as shown in . Each
mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth of the first
predicate. When thefirst predicate istrue, theresult is true as shown in the “If Predicate Is True” column, and the sec-
ond predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do not follow
the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of thefirst predicate can be made with the Branch on FP True (BCLT) instruction and the truth of the second
can be made with Branch on FP False (BC1F).

MIPS32® Architecture For Programmers Volume I, Revision 2.50 85
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Compare (cont.)

C.cond.fmt

Table 3-25 shows another set of eight compare operations, distinguished by aconds value of 1 and testing the same 16

conditions. For these additional comparisons, if at least one of the operandsis a NaN, including Quiet NaN, then an
Invalid Operation condition israised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation
exception occurs.

Table 3-25 FPU Comparisons Without Special Operand Exceptions

Comparison CC
Instruction Comparison Predicate Result Instruction
Relation InvOp | Condition
Values Excp. Field
If if
Cond Name of Predicate and Predicate | QNaN
Mnemonic | Logically Negated Predicate (Abbreviation) | >| <| =| ? IsTrue ? 3 2.0
False [this predicate is always False] F|F| F|F
F F 0
True (T) TIT|T|T
Unordered FIF|F|T T
UN 1
Ordered (OR) T|T|T|F F
Equal FIF|T|F T
EQ 2
Not Equal (NEQ) TIT|F|T F
Unordered or Equal FIF|T|T T
UEQ 3
Ordered or Greater Than or Less Than (OGL) TIT|F|F F
No 0
Ordered or Less Than F| T| F|F T
OLT 4
Unordered or Greater Than or Equal (UGE) TIF|T|T F
Unordered or Less Than FIT|F|T T
ULT 5
Ordered or Greater Than or Equal (OGE) TIF|T|F F
Ordered or Less Than or Equal FIT|T|F T
OLE 6
Unordered or Greater Than (UGT) TIF|IF|T F
Unordered or Less Than or Equal FIT|T|T T
ULE 7
Ordered or Greater Than (OGT) TIF|F|F F
Key: ?=unordered, > = greater than, < =lessthan, =isequal, T = True, F = False

86

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Compare (cont.) C.cond.fmt
Table 3-26 FPU Comparisons With Special Operand Exceptionsfor QNaNs
Comparison CC Instructio
Instruction Comparison Predicate Result n
Relation Condition
_ Values If Inv Op Field
Cond Name of Predicate and Predicate | Excp If
Mnemonic Logically Negated Predicate (Abbreviation) >| <|=|?| IsTrue QNaN? 3 2.0
Signaling False [this predicate always False] FIF|F|F
SF F 0
Signaling True (ST) TI(T|T|T
Not Greater Than or Less Than or Equal FIF|F|T T
NGLE 1
Greater Than or Less Than or Equal (GLE) T|{T|T|F F
Signaling Equal FIF|T|F T
SEQ 2
Signaling Not Equal (SNE) TIT|IF|T F
Not Greater Than or Less Than FIF|T|T T
NGL 3
Greater Than or Less Than (GL) T|IT|F|F F
Yes 1
Less Than FIT|F|F T
LT 4
Not Less Than (NLT) TIF|T|T F
Not Greater Than or Equal FIT|F|T T
NGE 5
Greater Than or Equal (GE) TIF|T|F F
Less Than or Equal FIT|T|F T
LE 6
Not Less Than or Equal (NLE) TIF|F|T F
Not Greater Than FIT|T|T T
NGT 7
Greater Than (GT) TIF|F|F F
Key: ?=unordered, > = greater than, < =lessthan, =isequal, T = True, F = False
MIPS32® Architecture For Programmers Volume I, Revision 2.50 87

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

88

Floating Point Compare (cont.)

C.cond.fmt

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -
ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of C.cond.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the condi-
tion code number is odd.

Operation:

if SNaN (ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN (ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less « false

equal « false
unordered ¢« true

if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond; and (QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException (InvalidOperation)
endif
else

less < ValueFPR(fs, fmt) <g, ValueFPR(ft, fmt)
equal <« ValueFPR(fs, fmt) =g, ValueFPR(ft, fmt)
unordered <« false
endif
condition ¢« (cond, and less) or (cond; and equal)
or (condy and unordered)
SetFPConditionCode (cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The

results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Compare (cont.) C.cond.fmt

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN

c.eqg.d $f2,$f4# check for equal

nop

bclt L2 # it is equal

c.un.d $f2,$f4# it is not equal,

but might be unordered

bclt ERROR # unordered goes off to an error handler

not-equal-case code here

equal-case code here
L2:

comparison using comparisons that signal QNaN
c.seqg.d $f2,$f4 # check for equal
nop
bclt L2 # it is equal
nop
it is not unordered here

not-equal-case code here

equal-case code here

MIPS32® Architecture For Programmers Volume I, Revision 2.50 89
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

90

Perform Cache Operation CACHE

31 26 25 21 20 16 15 0
CACHE
base op offset
101111
6 5 5 16
Format: CACHE op, offset (base) MIPS32
Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective addressis used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 3-27 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

The effective address is used to address the cache. An address translation may or
Address Virtual may not be performed on the effective address (with the possibility that aTLB
Refill or TLB Invalid exception might occur)

: Theeffective addressistrandated by the MMU to aphysical address. The physical
Address Prysicd address is then used to address the cache

The effective address is trandated by the MMU to aphysical address. It is
implementation dependent whether the effective address or the trandlated physical
addressisused to index the cache. As such, aksegO address should always be used
for cache operations that require an index. See the Programming Notes section
below.

Assuming that the total cache size in bytesis CS, the associativity isA, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

Index N/A
OffsetBit « Log2 (BPT)

IndexBit <« Log2(CS / A)

WayBit <« IndexBit + Ceiling(Log2(A))
Way ¢ AC-{(jhfWayBitfl ..IndexBit

Index ¢ Addripgexpit-1..offsetBit

For a direct-mapped cache, the Way calculation isignored and the Index value
fully specifies the cache tag. Thisis shown symbolically in the figure below.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

Figure 3-2 Usage of Address Fieldsto Select Index and Way

’._ WayBit;._ IndexBit ’._ OffsetBit .
W.

Unused ay Index byte index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

Bits[17:16] of the instruction specify the cache on which to perform the operation, as follows:
Table 3-28 Encoding of Bitg[17:16] of CACHE Instruction

Code Name Cache
0b00 Primary Instruction

0Ob01 D Primary Data or Unified Primary

0Ob10 T Tertiary

Ob11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

MIPS32® Architecture For Programmers Volume I, Revision 2.50 91
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation

Table 3-29 Encoding of Bits[20:18] of the CACHE Instruction

CACHE

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0b000

Index Invalidate

Index

Set the state of the cache block at the specified
index to invalid.

This required encoding may be used by
software to invalidate the entire instruction
cache by stepping through all valid indices.

Required

Index Writeback
Invalidate / Index
Invalidate

Index

ST

Index Writeback
Invalidate / Index
Invalidate

Index

For awrite-back cache: If the state of the cache
block at the specified index isvalid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
iscompleted, set the state of the cache block to
invalid. If theblock isvalid but not dirty, set the
state of the block to invalid.

For awrite-through cache: Set the state of the
cache block at the specified index to invalid.

This required encoding may be used by
software to invalidate the entire data cache by
stepping through al valid indices. Note that
Index Store Tag should be used to initialize the
cache at powerup.

Required

Optional

0b001

All

Index Load Tag

Index

Read thetag for the cache block at the specified
index into the TaglLo and TagHi Coprocessor 0
registers. If the Datal o and DataHi registers
areimplemented, also read the data
corresponding to the byte index into the
Datal.o and DataHi registers. This operation
must not cause a Cache Error Exception.

The granularity and alignment of the dataread
into the Datalo and DataHi registersis
implementation-dependent, but istypically the
result of an aligned access to the cache,
ignoring the appropriate low-order bits of the
byte index.

Recommended

92

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits[20:18] of the CACHE Instruction

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
Write the tag for the cache block at the
specified index from the TagLo and TagHi
Coprocessor 0 registers. This operation must
not cause a Cache Error Exception.
0b010 All Index Store Tag I ndex This required encoding may be used by Required
software to initialize the entire instruction or
data caches by stepping through all valid
indices. Doing so requires that the TagLo and
TagHi registers associated with the cache be
initiaized first.
| Available for implementation-dependent
| tati e ion. .
0b011 Al e ;{“eﬁg O | Unspecified | OPeration Optional
Required
. i Instruction Cache
: . If the cache block contains the specified (:
1D Hit Invalidate Address address, set the state of the cache block to Eggggmr% e?]ggg
invalid. -
0b100 otherwise
This required encoding may be used by
software to invalidate a range of addresses
from theinstruction cache by stepping through
the address range by the line size of the cache.
ST Hit Invalidate Address Optional
MIPS32® Architecture For Programmers Volume I, Revision 2.50 93

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits[20:18] of the CACHE Instruction

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
Fill the cache from the specified address.
| Fill Address Recommended
Hit Writeback For awrite-back cache: If the cache block
D Invalidate / Hit Address contains the specified address and it is valid Required
Invalidate and dirty, write the contents back to memory.
0b101 After that operation is completed, set the state
of the cache block to invalid. If the block is
valid but not dirty, set the state of the block to
invalid.
For awrite-through cache: If the cache block
contains the specified address, set the state of
Hit Writeback the cache block to invalid. .
ST In\iallglatg aé Hit Address | This required encoding may be used by Optional
nvalicae software to invalidate a range of addresses
from the data cache by stepping through the
address range by the line size of the cache.
D Hit Writeback Address If the cache block contains the specified Recommended
address and it is valid and dirty, write the
0b110 contentsback to memory. After theoperationis
completed, leave the state of theline valid, but
clear the dirty state. For awrite-through cache,
ST Hit Writeback Address this operation may be treated as anop. Optional
94 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits[20:18] of the CACHE Instruction

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0Ob111

Fetch and Lock

Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In
set-associative or fully-associative caches, the
way selected on afill from memory is
implementation dependent.

Thelock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears the
lock bit. Note that clearing the lock state via
Index Store Tag is dependent on the
implementation-dependent cache tag and
cache line organization, and that |ndex and
Index Writeback Invalidate operations are
dependent on cacheline organization. Only Hit
and Hit Writeback Invalidate operations are
generally portable across implementations.

It isimplementation dependent whether a
locked lineis displaced as the result of an
external invalidate or intervention that hitson
the locked line. Software must not depend on
the locked line remaining in the cacheif an
external invalidate or intervention would
invalidate the line if it were not locked.

It isimplementation dependent whether a
Fetch and Lock operation affects more than
one line. For example, more than one line
around the referenced address may be fetched
and locked. It is recommended that only the
singlelinecontaining thereferenced addressbe
affected.

Recommended

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

95

96

Perform Cache Operation (cont.) CACHE

Restrictions:
The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or awriteback invalidate.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical addressis used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 CEIL.L

fmt fs fd
010001 00000 001010
6 5 5 5 5 6
Format: CcEIL.L.S fd, fs MIPS64, MIPS32 Release 2
CEIL.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose:

To convert an FP value to 64-bit fixed point, rounding up

Description: FPR[fd] « convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fnt, is converted to a value in 64-bit long fixed point format and rounding toward +co
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -25 to 23-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, ad the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 262-1, is written to fd.

Restrictions:

Thefieldsfs and fd must specify valid FPRs; fsfor type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

MIPS32® Architecture For Programmers Volume I, Revision 2.50 97
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Fixed Point Ceiling Convert to Long Fixed Point (cont.) CEIL.L.fmt

98

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Ceiling Convert to Word Fixed Point

CEIL.W.fmt

31 26 25 21 20 16 15 11 10 6 5
COP1 0 CEIL.W
fmt fs fd
010001 00000 001110
6 5 5 5 5 6
Format: CEIL.w.sS fd, fs MIPS32
CEIL.W.D fd, fs MIPS32

Purpose:
To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[fd] ¢« convert_and_round (FPR[fs])

Thevauein FPR fs, in format fnt, is converted to avalue in 32-bit word fixed point format and rounding toward +co

(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231t0 281-1, the result cannot be

represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231, is written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result

isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

99

Move Control Word From Floating Point CFC1

31 26 25 21 20 16 15 11 10 0
COP1 CF 0
rt fs
010001 00010 000 0000 0000
6 5 5 5 11
Format: crcl rt, fs MIPS32
Purpose:

To copy aword from an FPU control register to a GPR

Description: GPR[rt] « FP_Control [FPR[fs]]
Copy the 32-bit word from FP (coprocessor 1) control register fsinto GPR rt.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

Operation:

if fs = 0 then
temp <« FIR
elseif fs = 25 then

temp < 02* || FCSR3; 55 || FCSRy;
elseif fs = 26 then

temp « 0'* || FCSRyy 15 || 0° || FCSRg , || 07
elseif fs = 28 then

temp « 02° || FCSRy; - || 0* || FCSR,, || FCSR;

elseif fs = 31 then
temp ¢« FCSR
else
temp ¢« UNPREDICTABLE
endif
GPR[rt] « temp

100 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Control Word From Floating Point (cont.) CFC1

Exceptions:
Coprocessor Unusable, Reserved Instruction

Historical I nformation:

For the MIPS I, 11 and Il architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPSI, 11, 111, or IV.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 101
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Control Word From Coprocessor 2 CFC2
31 26 25 21 20 16 15 11 10 0
COP2 CF
rt Impl
010010 00010
6 5 5 16
Format: crc2 rt, rd MIPS32

102

The syntax shown above is an example using CFC1 as amodel. The specific syntax is implementation dependent.

Purpose:

To copy aword from a Coprocessor 2 control register to a GPR

Description: GPR[rt] ¢« CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field. Theinterpretation of the Impl
field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

Theresult isUNPREDICTABLE if Impl specifies aregister that does not exist.

Operation:

temp ¢ CP2CCR[Impl]

GPR[rt]

Exceptions:

— temp

Coprocessor Unusable, Reserved Instruction

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Count L eading Onesin Word CLO
31 26 25 21 20 16 15 11 10 0
SPECIAL?2 0 CLO
rs rt rd
011100 00000 100001
6 5 5 5 5 6
Format: cLo rd, rs MIPS32

Purpose:

To Count the number of leading onesin aword

Description: GPR[rd] ¢ count_leading_ones GPR[rs]

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading ones is counted
and the result iswritten to GPR rd. If all of bits 31..0 were set in GPR rs, the result written to GPR rd is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of theinstruction. The operation of the instruction is UNPREDICTABLE if thert and rd fields of the
instruction contain different values.

Operation:

temp < 32
for i in 31

0

if GPR[rs]; = 0 then

temp « 31 - i

break
endif
endfor
GPR[rd] ¢« temp

Exceptions:
None

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

103

104

Count Leading Zerosin Word CLz
31 26 25 21 20 16 15 11 10 0
SPECIAL?2 0 CLz
rs rt rd
011100 00000 100000
6 5 5 5 5 6
Format: cLz rd, rs MIPS32

Purpose

Count the number of leading zerosin aword

Description: GPR[rd] ¢ count_leading_zeros GPR[rs]

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading zerosis counted
and the result iswritten to GPR rd. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of theinstruction. The operation of the instruction is UNPREDICTABLE if thert and rd fields of the
instruction contain different values.

Operation:

temp < 32
for i in 31

0

if GPR[rs]; = 1 then

temp « 31 - i

break
endif
endfor
GPR[rd] ¢« temp

Exceptions:
None

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Coprocessor Operation to Coprocessor 2 COP2

31 26 25 24 0
COP2 CcO
cofun
010010
6 1 25
Format: cop2 func MIPS32
Purpose:

To performance an operation to Coprocessor 2

Desmﬂpﬁon:CoprocessorOperation(2, cofun)

An implementation-dependent operation is performance to Coprocessor 2, with the cofun value passed as an argu-
ment. The operation may specify and reference internal coprocessor registers, and may change the state of the copro-
cessor conditions, but does not modify state within the processor. Details of coprocessor operation and internal state
are described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation (2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture For Programmers Volume I, Revision 2.50 105
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Control Word to Floating Point CTC1
31 26 25 21 20 16 15 11 10 0
COP1 CT 0
rt fs
010001 00110 000 0000 0000
6 5 5 5 11

Format: cTcl1 rt, fs MIPS32
Purpose:

106

To copy aword from a GPR to an FPU control register

Description: FP_control[fs] <« GPR[rt]

Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit and
its corresponding Enable bit are both set. The register iswritten before the exception occurs. Writing to FEXRto set a
cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set causes
the appropriate exception. The register is written before the exception occurs and the EPC register contains the

address of the CTC1 instruction.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Control Word to Floating Point (cont.) CTC1

Operation:

temp <« GPR[rtls3;, g
if fs = 25 then /* FCCR */
if temps3q g # 024 then
UNPREDICTABLE
else
FCSR « temp; 1 || FCSRy, || tempy || FCSRyy
endif
elseif fs = 26 then /* FEXR */
if temp,, 15 # 0 then
UNPREDICTABLE
else
FCSR ¢« FCSR31, .1g || tempiy 12 || FCSRyp. 5 ||
tempg 5 || FCSRy o
endif
elseif fs = 28 then /* FENR */
if tempy, 19 # 0 then

UNPREDICTABLE

else
FCSR « FCSR31, 35 || tempy || FCSRy3 1o || tempyp, -
|| FCSRg. 5 || tempy o

endif

elseif fs = 31 then /* FCSR */
if tempy, g # 0 then
UNPREDICTABLE
else
FCSR <« temp
endif
else
UNPREDICTABLE
endif

CheckFPException () Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical I nformation:

For the MIPS I, Il and Il architectures, the contents of floating point control register fs are undefined for the instruc-
tion immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPSI, 11, 111, or IV.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 107

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Control Word to Coprocessor 2 CTC2
31 26 25 21 20 16 15 11 10 0
COP2 CT
rt Impl
010010 00110
6 5 5 16
Format: cTCc2 rt, rd MIPS32

108

The syntax shown above is an example using CTC1 as amodel. The specific syntax isimplementation dependent.

Purpose:

To copy aword from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] « GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field is |eft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

Theresult isUNPREDICTABLE if rd specifies aregister that does not exist.

Operation:

temp ¢« GPR[rt]

CP2CCR[Impl] <« temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Double Floating Point

CVT.D.fmt

31 26 25 21 20 16 15 11 10 6 5
COP1 0 CVT.D
fmt fs fd
010001 00000 100001
6 5 5 5 5 6
Format: cvT.Dp.s fd, fs MIPS32
CVT.D.W fd, fs MIPS32

Purpose:

To convert an FP or fixed point value to double FP

CVT.D.L fd, fs

Description: FPR[fd] « convert_and_round (FPR[fs])

MIPS64, MIPS32 Release 2

The value in FPR fs, in format fnt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd. If fmt is S or W, then the operation is aways

exact.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for double floating point—if they are not valid,
the resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of thisinstruction is UNPREDICTABLE if the processor is executing in 16 FP registers

mode.

Operation:

StoreFPR

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

(fd, D, ConvertFmt (ValueFPR(fs,

Invalid Operation, Unimplemented Operation, Inexact

MIPS32® Architecture For Programmers Volume I, Revision 2.50

fmt) ,

fmt,

D))

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

109

Floating Point Convert to Long Fixed Point CVT.L.fmt

110

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 CVT.L
fmt fs fd
010001 00000 100101
6 5 5 5 5 6
Format: cvr.L.s fd, fs MIPS64, MIPS32 Release 2
CVT.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose:
To convert an FP value to a 64-bit fixed point
Description: FPR[fd] « convert_and_round (FPR[fs])
Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. Theresult is placed in FPR fd.
When the source value is Infinity, NaN, or rounds to an integer outside the range -25 to 283-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, the default result, 262-1, is written to fd.
Restrictions:
The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
resultis UNPREDICTABLE.
The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.
Operation:
StoreFPR (fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Long Fixed Point, cont. CVT.L.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 111

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair to Paired Single CVTPS.S

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt i s d CVT.PS
010001 10000 100110
6 5 5 5 5 6
Format: cvr.ps.s fd, fs, ft MIPS64, MIPS32 Release 2
Purpose:

To convert two FP values to a paired single value

Description: FPR[£d] « FPR[fsls;..o || FPRIftlaz. .o

The single-precision values in FPR fs and ft are written into FPR fd as a paired-single value. The value in FPR fsis
written into the upper half, and the value in FPR ft is written into the lower half.

fs ft
31 0 31 0
fd
63 32 31 0

CVT.PS.Sissimilar to PLL.PS, except that it expects operands of format Sinstead of PS,

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type S, if they are not valid, the result is UNPREDICT -
ABLE.

The operand must be avalue in format S if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

112 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair to Paired Single (cont.) CVTPS.S

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation

MIPS32® Architecture For Programmers Volume I, Revision 2.50 113

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Single Floating Point CVT.S.fmt

114

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 CVTS

fmt fs fd
010001 00000 100000
6 5 5 5 5 6

Format: cvT.s.p fd, fs MIPS32
CVT.S.W fd, fs MIPS32
CVT.S.L fd, fs MIPS64, MIPS32 Release 2

Purpose:
To convert an FP or fixed point value to single FP

Description: FPR[fd] « convert_and_round (GPR[fs])

Thevauein FPR fs, in format fnt, is converted to avalue in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type fmt and fd for single floating point. If they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:

StoreFPR(fd, S, ConvertFmt (ValueFPR(fs, fmt), fmt, S))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Convert Pair Lower to Single Floating Point CVTS.PL
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 CVT.SPL
fs fd
010001 10110 00000 101000
6 5 5 5 5 6

Format. cvt

Purpose:

To convert one half of a paired single FP value to single FP

.S.PL fd, fs

Description: GPR[fd] « convert_and_round (GPR[fs])

MIPS64, MIPS32 Release 2

The lower paired single value in FPR fs, in format PS, is converted to a value in single floating point format and
rounded according to the current rounding mode in FCSR. Theresult is placed in FPR fd. Thisinstruction can be used

to isolate the lower half of a paired single value.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the
resultis UNPREDICTABLE.

The operand must be avaluein format PS; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of CVT.S.PL isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR

Exceptions:

(fd, S, ConvertFmt (ValueFPR(fs,

Coprocessor Unusable, Reserved Instruction

Floating Point

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

Exceptions:

MIPS32® Architecture For Programmers Volume I, Revision 2.50

PS),

PL,

S))

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

115

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU

116

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 CVT.S.PU
fs fd
010001 10110 00000 100000
6 5 5 5 5 6
Format: cvT.s.PU fd, fs MIPS64, MIPS32 Release 2
Purpose:
To convert one half of a paired single FP value to single FP
Description: FPR[fd] « convert_and_round (FPR[fs])
The upper paired single value in FPR fs, in format PS, is converted to a value in single floating point format and
rounded according to the current rounding mode in FCSR. Theresult is placed in FPR fd. Thisinstruction can be used
to isolate the upper half of a paired single value.
Restrictions:
Thefields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the
resultis UNPREDICTABLE.
The operand must be avaluein format PS; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.
Theresult of CVT.S.PU is UNPREDICTABLE if the processor is executing in 16 FP registers mode.
Operation:
StoreFPR (fd, S, ConvertFmt (ValueFPR(fs, PS), PU, S))

Exceptions:
Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Convert to Word Fixed Point

CVT.W.fmt

31 26 25 21 20 16 15 11 10 6 5
COP1 0 CVT.W
fmt fs fd
010001 00000 100100
6 5 5 5 5 6
Format: cvr.w.s fd, fs MIPS32
CVT.W.D fd, fs MIPS32

Purpose:
To convert an FP value to 32-bit fixed point

Description: FPR[fd] « convert_and_round (FPR[fs])

Thevauein FPR fs, in format fmt, is converted to avaluein 32-bit word fixed point format and rounded according to

the current rounding mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231t0 281-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

117

118

Debug Exception Return DERET

31 26 25 24 6 5 0
COPO (6(0) 0 DERET
010000 1 000 0000 0000 0000 0000 011111
6 1 19 6

Format: DERET EJTAG
Purpose:
To Return from a debug exception.
Description:
DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).
Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.
If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).
DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.
Thisinstruction is legal only if the processor is executing in Debug Mode.The operation of the processor is UNDE-
FINED if aDERET is executed in the delay slot of a branch or jump instruction.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Debug Exception Return (cont.) DERET

Operation:

Debugpy ¢« 0

Debugpxr < 0

if IsMIPSl6Implemented() then
PC < DEPC3; 4 || O
ISAMode < DEPCj,

else
PC < DEPC

endif

ClearHazards ()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

MIPS32® Architecture For Programmers Volume I, Revision 2.50 119

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Disable Interrupts DI

120

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 sc 0 0
0100 00 01011 01100 000 00 0] 00 000
6 5 5 5 5 1 2 3
Format: b1 MIPS32 Release 2
DI rt MIPS32 Release 2
Purpose:

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
rO isimplied, which discards the previous value of the Status register.
Description: GPR[rt] « Status; Statuspg < 0

The current value of the Status register is loaded into general register rt. The Interrupt Enable (1E) bit in the Satus
register is then cleared.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and El have a specific value for the sc field.

data « Status
GPR[rt] ¢« data
Statusip < O

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Disable Interrupts, cont. DI

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of thisinstruction are identical to those accomplished by the sequence of reading Satusinto a GPR, clear-
ing the | E bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI instruc-
tion can not be aborted in the middie by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 121
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Divide Word DIV

31 26 25 21 20 16 15 6 5 0
SPECIAL 0 DIV
Is rt
000000 00 0000 0000 011010
6 5 5 10 6
Format: DIV rs, rt MIPS32
Purpose:

To divide a 32-bit signed integers

Description: (HI, LO) <« GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder isplaced into specia register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If thedivisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.
Operation:

g ¢ GPR[rslzq o div GPRIrtls; o

LO q

«—
r — GPR[IS]31__0 mod GPR[rt]310
HI < r

Exceptions:
None

122 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Divide Word (cont.) DIV

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if azero is detected.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 123
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Divide DIV.fmt

124

31 26 25 21 20 16 15 11 10 6 5 0
COP1 DIV
fmt ft fs fd
010001 000011
6 5 5 5 5 6

Format: pIv.s fd, fs, ft MIPS32

DIV.D fd, fs, ft MIPS32
Purpose:
To divide FP values
Description: FPR[fd]l « FPR[fs] / FPR[ft]
Thevaluein FPR fsisdivided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are valuesin format fmt.
Restrictions:
Thefieldsfs, ft, and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRED-
ICABLE.
The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.
Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))
Exceptions:
Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:
Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Divide Unsigned Word DIVU

31

26 25 21 20 16 15 6 5 0

SPECIAL 0 DIVU
s rt
000000 00 0000 0000 011011

6 5 5 10 6

Format: DIVU rs, rt MIPS32

Purpose:
To divide a 32-bit unsigned integers

Description: (HI, LO) <« GPR[rs] / GPR[rt]

The 32-bit word value in GPR rsis divided by the 32-hit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If thedivisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:

a <« (0 || GPRIrslj;.
r « (0 || GPR[rslj;.
LO <« sign_extend(qgs;.
HI ¢« sign_extend(rsq.

Exceptions:
None

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide isan MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 125

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Execution Hazard Barrier EHB

126

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 3 SLL
000000 00000 00000 00000 00011 000000
6 5 5 5 5 6
Format: EuB MIPS32 Release 2

Purpose:
To stop instruction execution until all execution hazards have been cleared.

Description:

EHB isthe assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
wareas SLL r0, r0, 3.

Thisinstruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execution
hazards have been cleared. Other than those that might be created as a consequence of setting Statuscyq, there are no

execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by previ-
ousinstructions are cleared for instructions executed immediately following the EHB, even if the EHB is executed in
the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards - such hazards are cleared
by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards ()

Exceptions:
None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB altersthe instruction issue behavior in amanner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have aready cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Enable Interrupts El

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 sC 0 0
0100 00 01011 01100 000 00 1| 00 000
6 5 5 5 5 1 2 3
Format: EI MIPS32 Release 2
EI rt MIPS32 Release 2
Purpose:

To return the previous value of the Satus register and enable interrupts. If El is specified without an argument, GPR
rO isimplied, which discards the previous value of the Status register.

Description: GPR[rt] « Status; Statusg <« 1

The current value of the Satus register is loaded into general register rt. The Interrupt Enable (IE) bit in the Satus
register isthen set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and El have a specific value for the sc field.

data <« Status
GPR[rt] ¢« data
Statusip < 1

MIPS32® Architecture For Programmers Volume I, Revision 2.50 127

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Enable Interrupts, cont. El

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Satus into a GPR, set-
ting the | E bit, and writing the result back to Satus. Unlike the multiple instruction sequence, however, the El instruc-
tion can not be aborted in the middie by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

128 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exception Return ERET

31 26 25 24 6 5 0
COPO CcO 0 ERET
010000 1 000 0000 0000 0000 0000 011000
6 1 19 6
Format: ERET MIPS32
Purpose:

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtl g5 from SRSCltlpgg in a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay dot).

Restrictions:

The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of abranch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves al execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtl g5 from SRSCtlpgg if Statusggy = 1, or if Statusgg, =
1 because any exception that sets Statusgg, t0 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlggin
SRSCtlpgg, If software sets Statusgg, t0 1, it must be aware of the operation of an ERET that may be subsequently
executed.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 129
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exception Return ERET

Operation:

if Statusgg; = 1 then
temp ¢ ErrorEPC
Statusggp < O
else
temp <« EPC
Statusgy;, < O
if (ArchitectureRevision = 2) and (SRSCtlygg > 0) and (Statusgpy = 0)then
SRSCtlegg ¢ SRSCtlpgg
endif
endif
if IsMIPSl6Implemented() then
PC « tempy; ;1 || O
ISAMode <« temp,
else
PC < temp
endif
LLbit « 0
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

130 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Extract Bit Field EXT

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 " o med Isb EXT
011111 (sze1) (pos) 000000
6 5 5 5 5 6
Format: ext rt, rs, pos, size MIPS32 Release 2
Purpose:

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] « ExtractField(GPR[rs], msbd, 1lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields mshd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and Isb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd < size-1
1sb « pos

The values of pos and size must satisfy al of the following relations:

0 < pos < 32
0 < size £ 32
0 < pos+size < 32

Figure 3-3 shows the symbolic operation of the instruction.

31 postsize postsize-1 pos pos-1 0
Isb+mshd+1 Isb+mshd Isb Ishb-1
GPRTs | 1KL | MNOP QRST
Initial 32-(pos+size) size
Value 32-(Isb+mshd+1) msba+1
31 size size-1 0
msbd+1 msbd
0 MNOP
GPR rt - -
Final Value 32-size Size
32-(mshd+1) msbd+1

Figure 3-3 Operation of the EXT Instruction

Restrictions:
In implementations prior to Release of the architecture, this instruction resulted in a Reserved Instruction Exception.
The operation is UNPREDICTABLE if Isb+mshd > 31.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 131
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Extract Bit Field, cont. EXT

Operation:
if (1sb + msbd) > 31) then
UNPREDICTABLE
endif
temp ¢ 0327 PID | GPR[rs] eparisn. . 150

GPR[rt] « temp

Exceptions:
Reserved Instruction

132 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 FLOOR.L

fmt fs fd
010001 00000 001011
6 5 5 5 5 6
Format: FLOOR.L.S fd, fs MIPS64, MIPS32 Release 2
FLOOR.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose:

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[fd] « convert_and_round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward -
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -25 to 23-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 262-1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

MIPS32® Architecture For Programmers Volume I, Revision 2.50 133
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Floor Convert to Long Fixed Point (cont.) FLOOR.L.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

134 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 FLOOR.W

fmt fs fd
010001 00000 001111
6 5 5 5 5 6

Format: FLOOR.W.S fd, fs MIPS32
FLOOR.W.D £d, fs MIPS32

Purpose:
To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[fd] « convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward —o

(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231t0 281-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand

FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact, Overflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

135

Insert Bit Field INS

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 i . e - NS
011111 (postsize-1) (pos) 000100
6 5 5 5 5 6

Format: ins rt, rs, pos, size MIPS32 Release 2
Purpose:
To merge aright-justified bit field from GPR rsinto a specified field in GPR rt.

Description: GPR[rt] « InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result
isplaced back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of

the field), in instruction bits 10..6, as follows:
msb ¢« pos+size-1
1sb « pos

The values of pos and size must satisfy al of the following relations:
0 < pos < 32

0 < size £ 32
0 < pos+size < 32

Figure 3-4 shows the symbolic operation of the instruction.

size size-1
31 msb-Isb+1 msb-Isb 0
GPRrs ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Ish+1
31 postsize postsize-1 pos pos-1 0
msb+1 msb Isb Isb-1
GPR 1 | 1KL | mnNoP , QRST
Initial 32-(postsize) size pos
Value 32-(msb+1) msb-Isb+1 Isb
31 postsize postsize-1 pos pos1 0
msb+1 msb Isb Isb-1
| 1IKL | EFGH QRST
GPR rt - -
Fina Value 32-(postsize) size pos
32-(msb+1) msb-lsb+1 Isb

Figure 3-4 Operation of the INS Instruction

136 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Insert Bit Field, cont. INS

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if Isb > msh.

Operation:
if 1sb > msb) then
UNPREDICTABLE
endif

GPR[rt] ¢« GPRIrtls; mepe1 || GPRIrSIngp-15p..0 || GPRITEI1gp-1. 0

Exceptions:
Reserved Instruction

MIPS32® Architecture For Programmers Volume I, Revision 2.50 137
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump J

31 26 25 0
J
instr_index
000010
6 26
Format. J target MIPS32
Purpose:

To branch within the current 256 M B-aligned region

Description:

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
Thelow 28 hits of the target addressistheinstr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.
Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I:
I+1:PC < PCqpripn-1..28 || instr_index || 02
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

138 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump and Link JAL

31 26 25 0
JAL
instr_index
000011
6 26
Format. JAL target MIPS32
Purpose:

To execute a procedure call within the current 256 M B-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
Thelow 28 hits of the target addressistheinstr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I: GPR[31]« PC + 8
I+1:PC ¢ PCqprien-1..28 || instr_index || 02
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 139

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register JALR

140

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 JALR
rs rd hint
000000 00000 001001
6 5 5 5 5 6
Format: JAILR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose:

To execute a procedure call to an instruction address in aregister

Description: GPR[rd] ¢ return_addr, PC ¢ GPR[rs]

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e ASE:

» Jump to the effective target addressin GPR rs. Execute the instruction that follows the jJump, in the branch delay
slot, before executing the jump itself.

For processors that do implement the MIPS16e ASE:

» Jump to the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the | SA Mode bit to the value in GPR rsbit 0. Bit 0 of the target address
is aways zero so that no Address Exceptions occur when bit O of the source register is one

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JALR. In Release
2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction descrip-
tion for additional information.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such aninstructionis UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit O is zero and bit
1lisone, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register, cont. JALR

Operation:

I: temp<« GPR[rs]
GPR[rd] « PC + 8
I+1l:if Configley = 0 then
PC « temp
else
PC ¢ tempgprren-1..1 || 0
ISAMode <« temp,
endif

Exceptions:
None

Programming Notes:

Thisisthe only branch-and-link instruction that can select aregister for the return link; all other link instructions use
GPR 31. The default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 141
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier JALR.HB

142

31 26 25 21 20 16 15 11 10 9 6 5 0
SPECIAL 0 Any other legal JALR
rs rd 1 hint value
000000 00000 001001
6 5 5 5 1 4 6
Format: JAILR.HB rs (rd = 31 implied) MIPS32 Release 2
JALR.HB rd, rs MIPS32 Release 2

Purpose:

To execute a procedure call to an instruction address in aregister and clear all execution and instruction hazards

DeSCI’iptiOI’]: GPR[rd] ¢« return_addr, PC ¢« GPR[rs], clear execution and instruction haz-
ards

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

» Jump to the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

» Jump to the effective target addressin GPR rs. Execute the instruction that follows the jJump, in the branch delay
slot, before executing the jump itself. Set the |SA Mode bit to the value in GPR rsbit 0. Bit O of the target address
is aways zero so that no Address Exceptions occur when bit O of the source register isone

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor O
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is al'so implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JALR.HB islegal in al operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JALR.HB uses hit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such aninstructionis UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 iszero and bit 1
isone, an Address Error exception occurs when the jJump target is subsequently fetched as an instruction.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier, cont. JALR.HB

Restrictions, cont.:

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay dlot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp <« GPR[rs]
GPR[rd] « PC + 8
I+1l:if Configlyy = 0 then
PC « temp
else
PC ¢ tempgppren-1..1 || 0
ISAMode < temp,
endif
ClearHazards ()

Exceptions:
None

Programming Notes:

JALR and JALR.HB are the only branch-and-link instructions that can select a register for the return link; al other
link instructions use GPR 31. The default register for GPR rd, if omitted in the assembly language instruction, is
GPR 31.

Thisinstruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
seguence, by simply replacing the original instructions with the HB equivalent.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 143
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register with Hazard Barrier, cont. JALR.HB

Example: Clearing hazards due to an ASID change
/ *
* Code used to modify ASID and call a routine with the new
* mapping established.
*
* a0 = New ASID to establish
* al = Address of the routine to call

*/
mfcO v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtcO v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb al /* Call routine, clearing the hazard */
nop
144 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump Register JR

31 26 25 21 20 11 10 6 5 0
SPECIAL 0 JR
rs hint
000000 00 0000 0000 001000
6 5 10 5 6
Format: JRr rs MIPS32
Purpose:

To execute a branch to an instruction address in a register

Description: pc < GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement the MIPS16e ASE, set the | SA Mode bit to the value in GPR rsbit 0. Bit O of the target
addressis always zero so that no Address Exceptions occur when bit O of the source register is one

Restrictions:

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit O is zero and bit
1lisone, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp < GPR[rs]
I+1l:if Configly, = 0 then
PC « temp

else
PC ¢ tempgprren-1..1 || O
ISAMode < tempg
endif
Exceptions:
None
MIPS32® Architecture For Programmers Volume I, Revision 2.50 145

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump Register, cont. JR

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

146 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier JR.HB

31 26 25 21 20 11 10 9 6 5 0
SPECIAL 0 Any other legal JR
s 11" fint value
000000 00 0000 0000 001000
6 5 10 1 4 6
Format: JR.HB rs MIPS32 Release 2
Purpose:

To execute a branch to an instruction address in aregister and clear all execution and instruction hazards.

DeSCI’iptiOI’]: PC ¢ GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

JR.HB implements a software barrier that resolves al execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is aso implemented by the ERET instruction, but that instruction is only available if access to Coprocessor O is
enabled, whereas JR.HB islegal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

For processors that implement the MIPS16 ASE, set the |SA Mode bit to the value in GPR rs bit 0. Bit O of the target
addressis always zero so that no Address Exceptions occur when bit O of the source register is one.

Restrictions:

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 iszero and bit 1
isone, an Address Error exception occurs when the jJump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABL E behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET. Fur-
ther, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay dot of the JALR.HB. Only haz-
ards created by instructions executed before the JR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 147

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier, cont. JR.HB

148

Operation:

I: temp < GPR[rs]
I+1l:if Configlyy = 0 then
PC « temp
else
PC ¢ tempgppren-1..1 || 0
ISAMode < temp,
endif
ClearHazards ()

Exceptions:
None

Programming Notes:

Thisinstruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to theinstruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a cal (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change
/ *
* Routine called to modify ASID and return with the new

* mapping established.

* a0 = New ASID to establish

*/
mfcO v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making awrite to the instruction stream visible

/*
* Routine called after new instructions are written to
* make them visible and return with the hazards cleared.

*/
{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Jump Register with Hazard Barrier, cont. JR.HB

Example: Clearing instruction hazardsin-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */
10:
MIPS32® Architecture For Programmers Volume I, Revision 2.50 149

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Byte LB

150

31 26 25 21 20 16 15 0
LB
base rt offset
100000
6 5 5 16
Format: 1B rt, offset (base) MIPS32
Purpose:

To load a byte from memory as a signed value

Description: GPR[rt] ¢ memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
None

Operation:

vAddr < sign_extend(offset) + GPR[base]

(pAddr, CCA)<« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge-1..2 || (pAddr; xor ReverseEndian
memword¢— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr; o xor BigEndianCPU?

GPR[rt]« sign_extend (memword;,gshyte. . g+byte)

2)

Exceptions:
TLB Réefill, TLB Invalid, Address Error, Watch

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Byte Unsigned LBU

31 26 25 21 20 16 15 0
LBU
base rt offset
100100
6 5 5 16
Format: LBU rt, offset (base) MIPS32
Purpose:

To load a byte from memory as an unsigned value

Description: GPR[rt] ¢ memory[GPR[base] + offset]

The contents of the 8-hit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
None

Operation:

vAddr < sign_extend(offset) + GPR[base]

(pAddr, CCA)<« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge-1..2 || (pAddr; xor ReverseEndian
memword¢— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr; o xor BigEndianCPU?

GPR[rt]« zero_extend(memword;,gspyte. .8*byte)

2)

Exceptions:
TLB Réefill, TLB Invalid, Address Error, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50 151
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword to Floating Point LDC1

152

31 26 25 21 20 16 15 0
LDC1
base ft offset
110101
6 5 5 16
Format: 1DCl1 ft, offset (base) MIPS32
Purpose:

To load a doubleword from memory to an FPR

Description: FPR[ft] « memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, , #0° then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr < paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
paddr < paddr xor 0bl00

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword < memmsw | memlsw

StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword to Coprocessor 2

LDC2

31 26 25 21 20 16 15 0
LDC2
base rt offset
110110
6 5 5 16
Format: 1DC2 rt, offset (base) MIPS32
Purpose:

To load a doubleword from memory to a Coprocessor 2 register

Description: CPR[2,rt,0] <« memory[GPR[base] + offset]
The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr, , #0° then SignalException (AddressError) endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr <« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢« paddr xor 0bl00

memmsw < LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memlsw

memmsw

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

153

Load Doubleword Indexed to Floating Point LDXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 LDXC1
base index fd
010011 00000 000001
6 5 5 5 5 6
Format: 1DXCc1l fd, index (base) MIPS64

MIPS32 Release 2

Purpose:
To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] « memory[GPR[base] + GPR[index]]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR fd. The contents of GPR index and GPR base are added to form the effective address.
Restrictions:

An Address Error exception occurs if EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr <« GPR[base] + GPR[index]
if vAddr, , #0° then
SignalException (AddressError)

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
paddr < paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢« paddr xor 0b100

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)

memdoubleword < memmsw | memlsw

StoreFPR(ft, UNINTERPRETED DOUBLEWORD, memdoubleword)
Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

154 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Halfword LH
31 26 25 21 20 16 15 0
LH
base rt offset
100001
6 5 5 16
Format: LH rt, offset (base) MIPS32

Purpose:
To load a halfword from memory as asigned value

Description: GPR[rt] ¢ memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
PAddr ¢ pAddrpgrgp-1..2 || (pAddr; xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte <« vAddr; xor (BigEndianCPU || 0)
GPR[rt] « sign extend(memword;s,gspyte..g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

155

Load Halfword Unsigned LHU
31 26 25 21 20 16 15 0
LHU
base rt offset
100101
6 5 5 16
Format: LHU rt, offset (base) MIPS32

Purpose:
To load a halfword from memory as an unsigned value

Description: GPR[rt] ¢ memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-hit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
PAddr ¢ pAddrpgrgp-1..2 || (pAddr; xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte <« vAddr; xor (BigEndianCPU || 0)
GPR[rt] ¢« zero_extend(memword;s,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

156 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Linked Word LL

31 26 25 21 20 16 15 0
LL
base rt offset
110000
6 5 5 16
Format: LL rt, offset (base) MIPS32
Purpose:

To load aword from memory for an atomic read-modify-write

Description: GPR[rt] ¢ memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
seguence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
seguence without attempting awrite.

Restrictions:

The addressed location must be synchronizable by all processors and 1/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword
LLbit « 1

MIPS32® Architecture For Programmers Volume I, Revision 2.50 157
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Linked Word (cont.) LL

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:
Thereisno Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

158 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Upper Immediate LUI

31 26 25 21 20 16 15 0
LUI 0
rt immediate
001111 00000
6 5 5 16
Format: LUI rt, immediate MIPS32
Purpose:

To load a constant into the upper half of aword

Description: GPR[rt] ¢« immediate || 0%°

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPR rt.

Restrictions:
None

Operation:

GPR[rt] ¢« immediate || 0%°

Exceptions:

None

MIPS32® Architecture For Programmers Volume I, Revision 2.50 159
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword Indexed Unaligned to Floating Point LUXC1

160

31 26 25 21 20 16 15 11 10 6 5 0

COP1X 0 LUXC1

base index fd
010011 00000 000101
6 5 5 5 5 6
Format: Luxcl fd, index(base) MIPS64
MIPS32 Release 2
Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[£d] ¢« memory[(GPR[base] + GPR[index])pgrgr-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective address.
The effective address is doubleword-aligned; EffectiveAddress, q are ignored.

Restrictions:
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr <« (GPR[base]+GPR[index])g 5 || 03

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
paddr < paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

paddr ¢« paddr xor 0b100

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword < memmsw | memlsw

StoreFPR(ft, UNINTERPRETED DOUBLEWORD, memdoubleword)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Word LW
31 26 25 21 20 16 15 0
LW
base rt offset
100011
6 5 5 16
Format: 1w rt, offset (base) MIPS32

Purpose:
To load aword from memory as asigned value

Description: GPR[rt] ¢ memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the

contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
if vAddr; , # 02 then

SignalException (AddressError)
endif
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
memword¢— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

161

Load Word to Floating Point LWC1
31 26 25 21 20 16 15 0
LWC1
base rt offset
110001
6 5 5 16
Format: Lwcl ft, offset (base) MIPS32

Purpose:
To load aword from memory to an FPR

Description: FPR[ft] « memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective

address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o= 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr; , # 02 then

SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation

(vAddr, DATA, LOAD)

memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,

memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

162

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Word to Coprocessor 2 LWC2
31 26 25 21 20 16 15 0
LWC2
base rt offset
110010
6 5 5 16
Format: Lwc2 rt, offset (base) MIPS32

Purpose:
To load aword from memory to a COP2 register

Description: CPR[2,rt,0] <« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The 16-bit signed offset is added to the contents

of GPR base to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o= 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddri, #0° then
SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr,

memword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr,

CPR[2,rt,0] ¢« memword

Exceptions:

TLB Réfill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

DATA, LOAD)

DATA)

163

Load Word Left LWL

31 26 25 21 20 16 15 0
LWL
base rt offset
100010
6 5 5 16
Format: LWL rt, offset (base) MIPS32
Purpose:

To load the most-significant part of aword as a signed value from an unaligned memory address

Description: GPR[rt] ¢ GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of Wisin the aligned word containing the EffAddr. This part of Wisloaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPRrt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytesin 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the |eft part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 3-5 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0| 1] 2 3|4 5 6| 7|8| 9| Memory initial contents
| e| f | g | h | GPR 24 Initial contents
| 2 | 3 | g | h | After executing LWL $24,2($0)
| 2 | 3 | 415 | Then after LWR $24,5($0)
164 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Word Left (con’t)

LWL

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr,_q), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

Figure 3-6 Bytes L oaded by LWL Instruction

Memory contents and byte offsets

o 1 2
O[T«]
3 2 1
most least
— significance —

3 <«big-endian

offset (VAddry)

0 <« little-endian

Initial contents of Dest Register

| 0 i e

most

| east

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian
I J K L
J K L|h
K L|g h
L[t g h

VAddrl__O
0

1
2
3

Little-endian
L[t g n
K L|lg h
J K L | h
I J K L

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

165

Load Word Left (con’t)

166

Restrictions:
None

Operation:

vAddr <« sign_extend(offset) + GPR[base]
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)

PAAdr < pAddrpgrze.1. 2 || (pPAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddre pAddrpgrzs-1..2 || 07
endif

byte ¢« vAddr, , xXor BigEndianCPU?

memword¢«— LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢« memwordy,gipyte..0 || GPRITtlz3_grpyte. .o
GPR[rt]« temp

Exceptions:
None
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical I nformation

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same
destination register would correctly merge the 1 to 4 loaded bytes with the dataloaded by the previousinstruction. All
such restrictions were removed from the architecturein MIPS 1.

LWL

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Word Right LWR
31 26 25 21 20 16 15 0
LWR
base rt offset
100110
6 5 5 16
Format: LWR rt, offset (base) MIPS32

Purpose:

To load the least-significant part of aword from an unaligned memory address as a signed value

Description: GPR[rt] ¢ GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte

boundary.

A part of W, the least-significant 1 to 4 bytes, isin the aligned word containing EffAddr. This part of W is loaded into
the least-significant (right) part of the word in GPR rt. The remaining most-significant part of the word in GPR rt is

unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytesin 2.5 form an unaligned word starting at location 2. A part of W, 2 bytes, isin the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination register.

Next, the complementary LWL |oads the remainder of the unaligned word.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

167

Load Word Right (cont.)

LWR

Figure 3-7 Unaligned Word Load Using LWL and LWR

most

- dignificance -

Word at byte 2 in big-endian memory; each memory byte contains its own address

least

[o]1

2 3|4

5

6 | 7 I 8 | 9 | Memory initial contents

el fiafh]

Le]F]4

5

[2]3]4]5]

GPR 24 Initial contents

After executing LWR $24,5($0)

Then after LWL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr,_q), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

168

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Word Right (cont.)

Figure 3-8 Bytes L oaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian
v a] k][] offset (vAddr o) el f]lg]hn]
3 2 1 0 <« little-endian most least
most least — significance—
— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian VAddry g Little-endian
e f g | 0 I J K L
HE 1 el 1 3 K
el I J K 2 HE
I J K L 3 e f g| |

Little-endian

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LWR

169

Load Word Right (cont.)

170

Restrictions:
None

Operation:

vAddr <« sign_extend(offset) + GPR[base]
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)

PAAdr < pAddrpgrze.1. 2 || (pPAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddre pAddrpgrzs-1..2 || 07
endif

byte ¢« vAddr, , xXor BigEndianCPU?

memword¢«— LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwordsy 33-gspyte || GPRITtl3i_grpyte. .o
GPR[rt]« temp

Exceptions:
TLB Ré€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is|oaded.

Historical Information

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same
destination register would correctly merge the 1 to 4 loaded bytes with the dataloaded by the previousinstruction. All
such restrictions were removed from the architecturein MIPS 1.

LWR

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Load Word Indexed to Floating Point LWXC1
31 26 25 21 20 16 15 11 10 5 0
COP1X 0 LWXC1
base index fd
010011 00000 000000
6 5 5 5 5 6

Format: Lwxcl fd, index(base) MIPS64

Purpose:

To load aword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] « memory [GPR[base] + GPR[index]]

MIPS32 Release 2

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o= 0 (not word-aligned).

Operation:

vAddr ¢ GPR[base] + GPR[index]
if vAddr; , # 02 then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr,

memword ¢ LoadMemory (CCA, WORD, pAddr,

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

DATA, LOAD)

vAddr,

DATA)

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

171

172

Multiply and Add Word to Hi,Lo MADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MADD
Is rt
011100 0000 00000 000000
6 5 5 5 5 6
Format: MaDD rs, rt MIPS32
Purpose:

To multiply two words and add the result to Hi, Lo

Description: (HI,LO) ¢« (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO.. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) + (GPR[rs] X GPR[rt])
HI « tempgs. 39
LO « tempsq. g

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Add MADD.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MADD
fr ft fs fd fmt
010011 100
6 5 5 5 5 3 3
Format: MaDD.S fd, fr, fs, ft MIPS64, MIPS32 Release 2
MADD.D fd, fr, fs, ft MIPS64, MIPS32 Release 2
MADD.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2
Purpose:

To perform a combined multiply-then-add of FP values

Description: FPR[fd] « (FPR[fs] X FPR[ft]) + FPR[fr]

The value in FPR fsis multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
added to the product. The result sum is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR fd. The operands and result are valuesin format fmt.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

Thefiddsfr, fs, ft, and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MADD.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vir ¢« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xgue vEL) ey vEXD)

MIPS32® Architecture For Programmers Volume I, Revision 2.50 173

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Add (cont.) MADD.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

174 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Multiply and Add Unsigned Word to Hi,Lo MADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MADDU
Is rt
011100 00000 00000 000001
6 5 5 5 5 6
Format: MaDDU rs, rt MIPS32
Purpose:

To multiply two unsigned words and add the result to Hi, Lo.

Description: (HI,LO) ¢« (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO.. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) + (GPR[rs] X GPR[rt])
HI « tempgs. 39
LO « tempsq. g

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 175
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

176

M ove from Coprocessor 0

MFCO

31 26 25 21 20 16 15 11 10 2 0
COPO MF 0
rt rd sel
010000 00000 00000000
6 5 5 5 8 3
Format: MFCO rt, rd MIPS32
MFCO rt, rd, sel MIPS32
Purpose:

To move the contents of a coprocessor O register to ageneral register.

Description: GPR[rt] ¢ CPR[O0,rd, sell

The contents of the coprocessor O register specified by the combination of rd and sel are loaded into general register
rt. Note that not all coprocessor O registers support the sel field. In those instances, the sel field must be zero.

Restrictions:
Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rd and sel.

Operation:

data ¢« CPR[0,rd, sel]
GPR[rt]

Exceptions:

< data

Coprocessor Unusable

Reserved Instruction

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Move Word From Floating Point MFC1
31 26 25 21 20 16 15 11 10 0
COP1 MF 0
rt fs
010001 00000 000 0000 0000
6 5 5 5 11
Format: MFCl rt, fs MIPS32

Purpose:
To copy aword from an FPU (CP1) general register to aGPR

Description: GPR[rt] « FPR[fs]

The contents of FPR fs are loaded into general register rt.

Restrictions:

Operation:
data <« ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] ¢« data

Exceptions:
Coprocessor Unusable, Reserved Instruction

Historical I nformation:

For MIPS |, MIPS 11, and MIPS 111 the contents of GPR rt are UNPREDICTABLE for the instruction immediately

following MFCL1.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

177

Move Word From Coprocessor 2 MEC?2
31 26 25 21 20 16 15 11 10 8 7 0
COP2 MF
rt Impl
010010 00000
6 5 5
Format: MFc2 rt, rd MIPS32
MFC2, rt, rd, sel MIPS32

178

The syntax shown above is an example using MFC1 as amodel. The specific syntax isimplementation dependent.

Purpose:

To copy aword from a COP2 general register to a GPR

Description: GPR[rt] <« CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

Theresults are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data <« CP2CPR[Impl]

GPR[rt]

Exceptions:

< data

Coprocessor Unusable

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Word From High Half of Floating Point Register MEHC1
31 26 25 21 20 16 15 11 10 0
COP1 MFH 0
rt fs
010001 00011 000 0000 0000
6 5 5 5 11

Format. MFHC1 rt, fs

Purpose:

To copy aword from the high half of an FPU (CP1) general register to aGPR

Description: GPR[rt] <« FPR[fslgs. 32

MIPS32 Release 2

The contents of the high word of FPR fs are loaded into general register rt. Thisinstruction is primarily intended to
support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Theresultsare UNPREDICTABLE if Statuseg = 0 and fsis odd.

Operation:

data < ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)g; 35

GPR[rt]

Exceptions:

< data

Coprocessor Unusable

Reserved Instruction

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

179

Move Word From High Half of Coprocessor 2 Register MEHC2

180

31 26 25 21 20 16 15 11 10 3 2 0
COP2 MFH
rt Impl
010010 00011
6 5 5 16
Format: MFHC2 rt, rd MIPS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHCL as a model. The specific syntax isimplementation dependent.

Purpose:
To copy aword from the high half of a COP2 general register to aGPR

Description: GPR[rt] ¢« CP2CPR[Impllgs. 35

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is |eft entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.
Operation:

data « CP2CPR[Impllgs. 39
GPR[rt] <« data

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move From HI Register MFHI

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 0 MFHI
rd
000000 00 0000 0000 00000 010000
6 10 5 5 6
Format: MFHI rd MIPS32
Purpose:

To copy the specia purpose HI register to a GPR

Description: GPR[rd] <« HI

The contents of special register HI are loaded into GPR rd.

Restrictions:
None

Operation:

GPR[rd] « HI

Exceptions:
None

Historical I nformation:

Inthe MIPS, 11, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 181

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move From LO Register MFLO

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 0 MFLO
rd
000000 00 0000 0000 00000 010010
6 10 5 5 6
Format: MFLO rd MIPS32
Purpose:

To copy the specia purpose LO register to a GPR

Description: GPR[rd] ¢« LO
The contents of special register LO are loaded into GPR rd.

Restrictions: None

Operation:
GPR[rd] ¢« LO

Exceptions:
None

Historical I nformation:

Inthe MIPS, 11, and 111 architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

182 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Move

MOV.fmt

31 26 25 21 20 16 15 11 10
COP1 0 MOV
fmt fs fd
010001 00000 000110
6 5 5 5 5 6
Format: mov.s fd, fs MIPS32
MOV.D fd, fs MIPS32

MOV.PS fd, fs

Purpose:

To move an FP value between FPRs

Description: FPR[fd] « FPR[fs]

MIPS64, MIPS32 Release 2

Thevaluein FPR fsis placed into FPR fd. The source and destination are values in format fmt. In paired-single for-
mat, both the halves of the pair are copied to fd.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of MOV.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt,

Exceptions:

ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

fmt))

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

183

Move Conditional on Floating Point False MOVF

184

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL o|ftf 0 MOVCI
rs cc rd
000000 0|0 00000 000001
6 5 3 11 5 5 6
Format: MOVF rd, rs, cc MIPS32
Purpose:

To test an FP condition code then conditionally move a GPR

Desxipﬁon:if FPConditionCode(cc) = 0 then GPR[rd] ¢« GPR[rs]

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rd.
Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
Reserved Instruction, Coprocessor Unusable

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point False MOVEfmt

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1 0| tf MOV CF

fmt cc fs fd
010001 0|0 010001
6 5 3 1 1 5 5 6

Format: MovF.s fd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
MOVF.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose:
To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 0 then FPR[fd] « FPR[fs]

If the floating point condition code specified by CC is zero, then the value in FPR fsis placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not zero, then FPR fsisnot copied and FPR fd retainsits previous value in format fmt. If fd did
not contain a value either in format fmt or previously unused data from aload or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVFE.PS conditionally merges the lower half of FPR fsinto the lower half of FPR fd if condition code CC is zero,
and independently merges the upper half of FPR fsinto the upper half of FPR fd if condition code CC+1 is zero. The
CC field must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avaluein format fmt; if it is not, the result is UNPREDITABL E and the value of
the operand FPR becomes UNPREDICTABLE.

Theresult of MOVFE.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 185
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point False (cont.) MOVEfmt

Operation:
if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

186 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Conditional on Not Zero MOVN
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 MOVN

rs rt rd
000000 00000 001011
6 5 5 5 5 6
Format: MOVN rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] #0 then GPR[rd] <« GPR[rs]

If thevaluein GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

Operation:

if GPR[rt] # 0 then

GPR[rd] ¢« GPR[rs]

endif

Exceptions:
None

Programming Notes:

The non-zero value tested here is the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-

tions.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

187

Floating Point Move Conditional on Not Zero MOVN.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 MOVN

fmt rt fs fd
010001 010011
6 5 5 5 5 6
Format: MovN.s fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32
MOVN.PS fd, fs, rt MIPS64, MIPS32 Release 2
Purpose:

To test a GPR then conditionally move an FP value

Description: if GPR[rt] #0 then FPR[fd] <« FPR[fs]

If thevaluein GPR rtis not equal to zero, then the valuein FPR fsis placed in FPR fd. The source and destination are
valuesin format fmt.

If GPR rt contains zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from aload or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of MOVN.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

188 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Not Zero MOVN.fmt

Operation:

if GPR[rt] # 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS32® Architecture For Programmers Volume I, Revision 2.50 189

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Conditional on Floating Point True MOVT

190

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL o|ftf 0 MOVCI
rs cc rd
000000 0|1 00000 000001
6 5 3 11 5 5 6
Format: w™MovT rd, rs, cc MIPS32
Purpose:

To test an FP condition code then conditionally move a GPR

Desxipﬁon: if FPConditionCode(cc) = 1 then GPR[rd] ¢« GPR[rs]

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rd.
Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
Reserved Instruction, Coprocessor Unusable

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point True MOVT.fmt

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1 0| tf MOV CF

fmt cc fs fd
010001 0|1 010001
6 5 3 1 1 5 5 6
Format: wmovT.s fd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32
MOVT.PS fd, fs, cc MIPS64, MIPS32 Release 2
Purpose:

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 1 then FPR[fd] « FPR[fs]

If the floating point condition code specified by CC is one, then the valuein FPR fsis placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd
did not contain a value either in format fmt or previously unused data from aload or move-to operation that could be
interpreted in format fmt, then the value of fd becomes undefined.

MOVT.PS conditionally merges the lower half of FPR fsinto the lower half of FPR fd if condition code CC is one,
and independently merges the upper half of FPR fsinto the upper half of FPR fd if condition code CC+1 isone. The
CC field should be even; if it is odd, the result of this operationis UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Theresult of MOVT.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 191
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Floating Point True MOVT.fmt
Operation:
if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif
Exceptions:
Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:
Unimplemented Operation
192 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Conditional on Zero MOVZ
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 MOvZz

rs rt rd
000000 00000 001010
6 5 5 5 5 6
Format: MOvZ rd, rs, rt MIPS32

Purpose:
To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] = 0 then GPR[rd] ¢« GPR[rs]

If thevaluein GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

Operation:

if GPR[rt] = 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
None

Programming Notes:

The zero value tested here is the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-

tions.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

193

Floating Point Move Conditional on Zero MOVZ.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 MOVZ

fmt rt fs fd
010001 010010
6 5 5 5 5 6
Format: movz.s fd, fs, rt MIPS32
MOVZ.D fd, fs, rt MIPS32
MOVZ.PS fd, fs, rt MIPS64, MIPS32 Release 2
Purpose:

To test a GPR then conditionally move an FP value

Description: if GPR[rt] = 0 then FPR[fd] « FPR[fs]

If thevaluein GPR rtisequal to zero then the valuein FPR fsis placed in FPR fd. The source and destination are val-
uesin format fmt.

If GPR rt isnot zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain avalue either in format fmt or previously unused data from aload or move-to operation that could be interpreted
in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of MOVZ.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

194 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Move Conditional on Zero (cont.) MOVZ.fmt

Operation:

if GPR[rt] = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS32® Architecture For Programmers Volume I, Revision 2.50 195

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

196

Multiply and Subtract Word to Hi,Lo MSUB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MSUB
IS rt
011100 00000 00000 000100
6 5 5 5 5 6
Format: MSUB rs, rt MIPS32
Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ¢« (HI,LO) - (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO.. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) - (GPR[rs] X GPR[rt])
HI < tempgs. 32
LO ¢« tempsq. g

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Subtract MSUB.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MSUB
fr ft fs fd fmt
010011 101
6 5 5 5 5 3 3
Format: wMsuB.s fd, fr, fs, ft MIPS64
MSUB.D fd, fr, fs, ft MIPS64
MSUB.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2
Purpose:

To perform a combined multiply-then-subtract of FP values

Description: FPR[fd] « (FPR[fs] x FPR[ft]) — FPR[fr]

The value in FPR fsis multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
subtracted from the product. The subtraction result is cal culated to infinite precision, rounded according to the current
rounding mode in FCSR, and placed into FPR fd. The operands and result are valuesin format fi.

MSUB.PS muiltiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

Thefiddsfr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MSUB.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vir ¢« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xgype vEL) —gpe vEX))

MIPS32® Architecture For Programmers Volume I, Revision 2.50 197

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply Subtract (cont.) MSUB.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

198 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Multiply and Subtract Word to Hi,Lo MSUBU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 0 MSUBU
Is rt
011100 00000 00000 000101
6 5 5 5 5 6
Format: MSUBU rs, rt MIPS32
Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ¢ (HI,LO) - (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO.. The
most significant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arith-
metic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) - (GPR[rs] X GPR[rt])
HI « tempgs. 39
LO « tempsq. g

Exceptions:
None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 199
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move to Coprocessor 0 MTCO

31 26 25 21 20 16 15 11 10 3 2 0
COPO MT 0
rt rd s
010000 00100 0000 000
6 5 5 5 8 3
Format. MTCO rt, rd MIPS32
MTCO rt, rd, sel MIPS32
Purpose:

To move the contents of a general register to a coprocessor O register.

Description: CPR[0, rd, sel] < GPR[rt]

The contents of general register rt are loaded into the coprocessor O register specified by the combination of rd and
sel. Not all coprocessor O registers support the the sel field. In those instances, the sel field must be set to zero.
Restrictions:

Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rd and sel.

Operation:

data <« GPR[rt]
CPR[0,rd,sel] « data

Exceptions:
Coprocessor Unusable
Reserved Instruction

200 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Word to Floating Point MTC1
31 26 25 21 20 16 15 11 10 0
COP1 MT 0
rt fs
010001 00100 000 0000 0000
6 5 5 5 11
Format: wMTCl rt, fs MIPS32
Purpose:

To copy aword from a GPR to an FPU (CP1) general register

Description: FPR[fs] « GPR[rt]

Thelow word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data « GPR[rt]sq.
StoreFPR(fs,

Exceptions:

Coprocessor Unusable

Historical I nformation:
For MIPS |, MIPSI11, and MIPS 111 the value of FPR fsis UNPREDICTABLE for the instruction immediately follow-

ing MTC1.

.0
UNINTERPRETED_WORD, data)

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

201

Move Word to Coprocessor 2 MTC2

202

31 26 25 21 20 16 15 11 10 8 7 0
COP2 MT
rt Impl
010010 00100
6 5 5 16
Format: MTC2 rt, rd MIPS32
MTC2 rt, rd, sel MIPS32

The syntax shown above is an example using MTC1 as amodel. The specific syntax isimplementation dependent.

Purpose:
To copy aword from a GPR to a COP2 general register

Description: CP2CPR[Impl] « GPR[rt]

The low word in GPR rt is placed into the low word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is |eft entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:
Theresults are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data <« GPR[rt]
CP2CPR[Impl] <« data

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Word to High Half of Floating Point Register MTHC1

31 26 25 21 20 16 15 11 10 0
COP1 MTH 0
rt fs
010001 00111 000 0000 0000
6 5 5 5 11
Format: MTHC1 rt, fs MIPS32 Release 2
Purpose:

To copy aword from a GPR to the high half of an FPU (CP1) general register

Description: FPR[fs]g3 35 ¢ GPRIrt]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Theresultsare UNPREDICTABLE if Statuseg = 0 and fsis odd.

Operation:

newdata < GPR[rt]olddata « ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)3;
StoreFPR(fs, UNINTERPRETED DOUBLEWORD, newdata || olddata)

Exceptions:
Coprocessor Unusable
Reserved Instruction

Programming Notes

When paired with MTC1 to write avalue to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHCL.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 203
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move Word to High Half of Coprocessor 2 Register MTHC2

31 26 25 21 20 16 15 11 10 0
COP2 MTH
rt Impl
010010 00111
6 5 5 16
Format: MTHC2 rt, rd MIPS32 Release 2
MTHC2 rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose:
To copy aword from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impl]lgs 35 < GPRIrt]

The word in GPR rt is placed into the high word of coprocessor 2 genera register denoted by the Impl field. The
interpretation of the Impl field is |eft entirely to the Coprocessor 2 implementation and is not specified by the archi-

tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data <« GPR[rt]
CP2CPR[Impl] <« data ||CPR[2,rd,sells; g

Exceptions:
Coprocessor Unusable
Reserved Instruction

Programming Notes

When paired with MTC2 to write avalue to a 64-bit CPR, the MTC2 must be executed first, followed by the MTHC2.
This is because of the semantic definition of MTC2, which is not aware that software will be using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

204 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Move to HI Register MTHI
31 26 25 21 20 0
SPECIAL 0 MTHI
IS
000000 000 0000 0000 0000 010001
6 5 15 6
Format: MTHI rs MIPS32

Purpose:

To copy a GPR to the special purpose HI register

Description: HI < GPR[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either HI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows thisillegal situation:

MUL
MTHI
MFLO

Operation:

r2,r4d # start operation that will eventually write to HI,LO

code not containing mfhi or mflo
r6
code not containing mflo

r3 # this mflo would get an UNPREDICTABLE value

HI <« GPR[rs]

Exceptions:

None

Historical I nformation:

In MIPS I-11, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or moreinstructions. In MIPS IV and later, including M1PS32 and M1PS64, this restriction does not exist.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

205

Move to LO Register MTLO
31 26 25 21 20 0
SPECIAL 0 MTLO
IS
000000 000 0000 0000 0000 010011
6 5 15 6
Format: MTLO rs MIPS32

Purpose:

To copy a GPR to the special purpose LO register

Description: L0 < GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before anew result can be written into either HI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of HI are UNPREDICTABLE. The following example showsthisillegal situation:

MUL
MTLO
MFHI

Operation:

r2,r4d # start operation that will eventually write to HI,LO

code not containing mfhi or mflo
r6
code not containing mfhi

r3 # this mfhi would get an UNPREDICTABLE value

LO ¢« GPR[rs]

Exceptions:

None

Historical I nformation:

In MIPS I-11, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or moreinstructions. In MIPS IV and later, including M1PS32 and M1PS64, this restriction does not exist.

206

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Multiply Word to GPR MUL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 0 MUL
rs rt rd
011100 00000 000010
6 5 5 5 5 6
Format: ™MUL rd, rs, rt MIPS32
Purpose:

To multiply two words and write the result to a GPR.

Description: GPR[rd] ¢ GPR[rs] X GPR[rt]

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The contents of HI and
LO are UNPREDI CTABL E after the operation. No arithmetic exception occurs under any circumstances.
Restrictions:

Note that thisinstruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp <- GPR[rs] * GPR[rt]

GPR[rd] <- temps3; g

HI <- UNPREDICTABLE

LO <- UNPREDICTABLE
Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 207

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Multiply MUL.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 MUL

fmt ft fs fd
010001 000010
6 5 5 5 5 6

Format: mMuL.s fd, fs, ft MIPS32
MUL.D fd, fs, ft MIPS32
MUL.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:
To multiply FP values

Description: FPR[fd] « FPR[fs] X FPR[ft]

Thevaluein FPR fsismultiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated
exceptional conditions.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MUL.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) Xg,+ ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

208 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Multiply Word MULT

31 26 25 21 20 16 15 6 5 0
SPECIAL 0 MULT
Is rt
000000 00 0000 0000 011000
6 5 5 10 6
Format: MULT rs, rt MIPS32
Purpose:

To multiply 32-bit signed integers

Description: (HI, LO) ¢ GPR[rs] XGPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-hit result. The low-order 32-bit word of the result is placed into special register LO, and the
high-order 32-bit word is splaced into specia register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:
prod <« GPR[rsl3; g X GPR[rtlsq g
LO < prods;. g
HI < prodgs. 33

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 209

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Multiply Unsigned Word MULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL 0 MULTU
Is rt
000000 00 0000 0000 011001
6 5 5 10 6
Format: MULTU rs, rt MIPS32
Purpose:

To multiply 32-bit unsigned integers

Description: (HI, LO) ¢« GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the
high-order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:

prod« (0 || GPR[rsls; o) X (0 || GPRIrtls; o)
LO <« prods;. g
HI < prodgs. 33

Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

210 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Negate

NEG.fmt

31 26 25 21 20 16 15 11 10
COP1 0 NEG
fmt fs fd
010001 00000 000111
6 5 5 5 5 6
Format: NEG.s fd, fs MIPS32
NEG.D fd, fs MIPS32

Purpose:

NEG.PS fd, fs

To negate an FP value

Description: FPR[fd] « —FPR[fs]

MIPS64, MIPS32 Release 2

Thevaluein FPR fsis negated and placed into FPR fd. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and
ORs together any generated exceptional conditions.

This operation is arithmetic; a NaN operand signalsinvalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Theresult of NEG.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt,

Exceptions:

Negate (ValueFPR(fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

fmt)))

211

Floating Point Negative Multiply Add NMADD.fmt

212

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMADD
fr ft fs fd fmt
010011 110
6 5 5 5 5 3 3
Format: ~NMaDD.s fd, fr, fs, ft MIPS64
NMADD.D fd, fr, fs, ft MIPS64
NMADD.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2
Purpose:
To negate a combined multiply-then-add of FP values
Description: FPR[fd] « — ((FPR[fs] x FPR[ft]) + FPR[fr])
The value in FPR fsis multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
added to the product.
The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt.
NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.
Cause hits are ORed into the Flag bits if no exception is taken.
Restrictions:
Thefieldsfr, fs, ft, and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRE-
DICTABLE.
The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.
Theresult of NMADD.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.
Operation:
vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —(vir +ge (VES Xgye vER)))
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Add (cont.) NMADD.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 213

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Subtract NMSUB.fmt

214

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMSUB
fr ft fs fd fmt
010011 111
6 5 5 5 5 3 3
Format: w~MsuB.s fd, fr, fs, ft MIPS64
NMSUB.D fd, fr, fs, ft MIPS64
NMSUB.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2
Purpose:
To negate a combined multiply-then-subtract of FP values
Description: FPR[fd] « - ((FPR[fs] X FPR[ft]) - FPR[fr])
The value in FPR fsis multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
subtracted from the product.
The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt.
NM SUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.
Cause hits are ORed into the Flag bits if no exception is taken.
Restrictions:
Thefieldsfr, fs, ft, and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRE-
DICTABLE.
The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.
Theresult of NMSUB.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.
Operation:
vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit < ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —((vfs Xgpe VEE) —gpe VEX))
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Negative Multiply Subtract (cont.) NMSUB.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 215

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

No Operation NOP

216

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 0 SLL
000000 00000 00000 00000 00000 000000
6 5 5 5 5 6
Format: wnop Assembly Idiom
Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
ro, ro, 0.

Restrictions:

None

Operation:
None

Exceptions:
None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, O, isthe preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Not Or NOR
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 NOR

rs rt rd
000000 00000 100111
6 5 5 5 5 6
Format: NOR rd, rs, rt MIPS32
Purpose:

To do a bitwise logical NOT OR

Description: GPR[rd] ¢« GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd]

Exceptions:

None

¢« GPR[rs] nor GPR[rt]

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

217

Or

218

OR
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 OR
rs rt rd
000000 00000 100101
6 5 5 5 5 6
Format: OR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical OR

Description: GPR[rd] ¢« GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd]

Exceptions:
None

¢« GPR[rs] or GPR[rt]

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Or Immediate ORI
31 26 25 21 20 16 15 0
ORI
rs rt immediate
001101
6 5 5 16
Format: ORI rt, rs, immediate MIPS32

Purpose:

To do abitwise logical OR with a constant

Description: GPR[rt] ¢ GPR[rs] or immediate
The 16-hit immediate is zero-extended to the left and combined with the contents of GPR rsin a bitwise logical OR

operation. Theresult is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:
None

< GPR[rs] or zero_extend(immediate)

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

219

Pair Lower Lower PLL.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PLL
ft fs fd
010001 10110 101100
6 5 5 5 5 6
Format: PLL.PS fd, fs, ft MIPS64, MIPS32 Release 2
Purpose:

To merge apair of paired single values with realignment

Description: FPR[fd] ¢ lower (FPR[fs]) || lower (FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single of FPR
ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)3; o)

Exceptions:
Coprocessor Unusable, Reserved Instruction

220 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Pair Lower Upper PLU.PS
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PLU

ft fs fd
010001 10110 101101
6 5 5 5 5 6
Format: pLU.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To merge apair of paired single values with realignment

Description: FPR[fd] ¢« lower (FPR[fs])

| | upper (FPR[£ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR

ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)gs 32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

221

Prefetch PREF

222

31 26 25 21 20 16 15 0
PREF
base hint offset
110011
6 5 5 16
Format: PREF hint,offset (base) MIPS32
Purpose:

To move data between memory and cache.

DeSCI’iptiOI’]:prefetch_memory(GPR[base] + offset)

PREF adds the 16-hit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or ater the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
State.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as abyproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed coherency
attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by aload or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Prefetch (cont.)

Table 3-30 Values of the hint Field for the PREF I nstruction

Value

Name

Data Use and Desired Prefetch Action

load

Use: Prefetched data is expected to be read (not modified).
Action: Fetch dataasif for aload.

store

Use: Prefetched datais expected to be stored or modified.
Action: Fetch data asif for astore.

2-3

Reserved

Reserved for future use - not available to implementations.

load_streamed

Use: Prefetched datais expected to be read (not modified) but not
reused extensively; it “streams’ through cache.

Action: Fetch dataasif for aload and placeit in the cache so that it
does not displace data prefetched as “retained.”

store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams’ through cache.

Action: Fetch dataasif for astore and placeit in the cache so that
it does not displace data prefetched as “retained.”

load_retained

Use: Prefetched datais expected to be read (not modified) and
reused extensively; it should be “retained” in the cache.

Action: Fetch dataasif for aload and placeit in the cache so that it
is not displaced by data prefetched as “ streamed.”

store_retained

Use: Prefetched dataisexpected to be stored or modified and reused
extensively; it should be “retained” in the cache.

Action: Fetch data asif for astore and place it in the cache so that
it isnot displaced by data prefetched as “ streamed.”

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PREF

223

Table 3-30 Values of the hint Field for the PREF Instruction

8-24 Reserved Reserved for future use - not available to implementations.

Use: Datais no longer expected to be used.

Action: For awriteback cache, schedule awirteback of any dirty
writeback_invalidate data. At the completion of the writeback, mark the state of any
(alsoknown as“nudge”’) | cachelineswritten back asinvalid. If the cachelineisnot dirty, itis
implementation dependent whether the state of the cachelineis
marked invalid or left unchanged. If the cache line islocked, no
action is taken.

25

Implementation
26-29 Dependent Unassigned by the Architecture - available for
implementation-dependent use.

Use: Prepare the cache for writing an entire line, without the
overhead involved in filling the line from memory.

Action: If the reference hits in the cache, no action istaken. If the
reference missesin the cache, alineis selected for replacement, any
30 PrepareForSiore vaid and dirty victim iswritten back to memory, the entirelineis
filled with zero data, and the state of thelineis marked as valid and

dirty.

Programming Note: Because the cache lineisfilled with zero data
on a cache miss, software must not assume that this action, in and
of itself, can be used as afast bzero-type function.

Implementation
31 Dependent Unassigned by the Architecture - available for
implementation-dependent use.

224 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Prefetch (cont.) PREF

Restrictions:
None

Operation:
vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have trandations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It isimplementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have
high-reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch datain an optimal way. If dataisto betruly
retained, software should use the Cache instruction to lock data into the cache.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 225

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Prefetch Indexed PREFX

226

31 26 25 21 20 16 15 11 10 6 5 0

COP1X 0 PREFX

base index hint
010011 00000 001111
6 5 5 5 5 6
Format: PREFX hint, index (base) MIPS64
MIPS32 Release 2
Purpose:

To move data between memory and cache.

Description: prefetch_memory[GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.

Restrictions:

Operation:
vAddr ¢« GPR[base] + GPR[index]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Also refer to the corresponding section in the PREF instruction description.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Pair Upper Lower PUL.PS
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PUL

ft fs fd
010001 10110 101110
6 5 5 5 5 6
Format: PpUL.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To merge apair of paired single values with realignment

Description: FPR[fd] « upper (FPR[fs])

|| lower (FPR[£ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of
FPR ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 35 || ValueFPR(ft, PS)3;. ¢)

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

227

Pair Upper Upper PUU.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PUU
ft fs fd
010001 10110 101111
6 5 5 5 5 6
Format: puvU.PS fd, fs, ft MIPS64, MIPS32 Release 2
Purpose:

To merge apair of paired single values with realignment

Description: FPR[fd] « upper (FPR[fs]) || upper (FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of
FPR ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 35 || ValueFPR(ft, PS)g3. 32)

Exceptions:
Coprocessor Unusable, Reserved Instruction

228 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Read Hardware Register

RDHWR

31 26 25 21 20 16 15 11 10 6 5
SPECIAL3 0 RDHWR
rt rd
011111 00 000 000 00 111011
6 5 5 2 3 6
Format: RDHWR rt,rd MIPS32 Release 2
Purpose:

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.

Description: GPR[rt] « HWR[rd]
If access is allowed to the specified hardware register, the contents of the register specified by rd is loaded into gen-

era register rt. Access control for each register is selected by the bitsin the coprocessor 0 HWREnNa register.

The available hardware registers, and the encoding of the rd field for each, are shown in Table 3-31.

Table 3-31 Hardware Register List

Register Number Register
(rd Value) Name Contents
0 CPUNUm Number of the CPU on which the program is currently running.
This comes directly from the coprocessor 0 EBasecpynum field.
Address step size to be used with the SYNCI instruction. See that
1 SYNCI_3tep instruction’s description for the use of this value.
> cc High-resolution cycle counter. This comes directly from the
coprocessor 0 Count register.
Resolution of the CC register. This value denotes the number of
cycles between update of the register. For example:
CCRes Value Meaning
3 CCRes 1 CC register increments every CPU cycle
2 CC register increments every second CPU cycle
3 CC register increments every third CPU cycle
etc.
4-28 Reserved for future architectural use. Access resultsin a Reserved
Instruction Exception.
29 Reserved for future use by aMIPS ABI extension. Accessresultsin
a Reserved Instruction Exception
These registers are reserved for implementati on-dependent use. If
30-31 they are implemented, the corresponding bits in the HWREna

register control access. If they are not implemented, access results
in a Reserved Instruction Exception.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

229

Read Hardware Register, cont.

Restrictions:

In implementations of Release 1 of the Architecture, thisinstruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If accessis not allowed, a Reserved Instruction Exception is signaled.

Operation:
case rd
0x00: temp < EBasecpyyum
0x01: temp ¢« SYNCI_StepSize()
0x02: temp « Count
0x03: temp ¢« CountResolution()
0x30: temp ¢« Implementation-Dependent-Value
0x31: temp ¢« Implementation-Dependent-Value
otherwise: SignalException(ReservedInstruction)
endcase
GPR[rt] « temp

Exceptions:
Reserved Instruction

230 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Read GPR from Previous Shadow Set RDPGPR
31 26 25 21 20 16 15 11 10 0
COPO RDPGPR rt rd 0
0100 00 01010 000 0000 0000
6 5 5 5 11
Format: RDPGPR rd, rt MIPS32 Release 2
Purpose:

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rd] ¢ SGPR[SRSCtlpgg, rt]

The contents of the shadow GPR register specified by SRSCtlpgs (signifying the previous shadow set number) and rt

(specifying the register number within that set) is moved to the current GPR rd.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

GPR[rd]

Exceptions:

Coprocessor Unusable

Reserved Instruction

¢ SGPR[SRSCtlpgg, rt]

MIPS32® Architecture For Programmers Volume I, Revision 2.50

231

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Reciprocal Approximation RECIP.fmt

232

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RECIP
fmt fs fd
010001 00000 010101
6 5 5 5 5 6
Format: RECIP.S fd, fs MIPS64, MIPS32 Release 2
RECIP.D fd, fs MIPS64, MIPS32 Release 2
Purpose:
To approximate the reciprocal of an FP value (quickly)
Description: FPR[fd] ¢« 1.0 / FPR[fs]
The reciprocal of the value in FPR fs is approximated and placed into FPR fd. The operand and result are values in
format fmt.
The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
| EEE 754 Floating Point standard. The computed result differs from the both the exact result and the | EEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).
It isimplementation dependent whether the result is affected by the current rounding mode in FCSR.
Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.
The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Theresult of RECIP.D is UNPREDICTABLE if the processor is executing in 16 FP registers mode.
Operation:
StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Reciprocal Approximation (cont.) RECIP.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 233

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Rotate Word Right ROTR

234

31 26 25 22 21 20 16 15 11 10 6 5 0
SPECIAL R SRL
0000 1 rt rd sa
000000 000010
6 4 1 5 5 5 6
Format. ROTR rd, rt, sa SmartMIPS Crypto, MIPS32 Release 2
Purpose:

To execute alogical right-rotate of aword by afixed number of bits

Description: GPR[rd] <« GPR[rt] <> (right) sa

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by sa.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3gy, = 0)) then
UNPREDICTABLE

endif

s «— sa

temp < GPR[rtlg ;. g || GPRIrtlsy ¢

GPR[rd]« temp

Exceptions:
Reserved Instruction

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Rotate Word Right Variable ROTRV
31 26 25 21 20 16 15 11 10 7 0
SPECIAL SRLV
rs rt rd 0000
000000 000110
6 5 5 5 4 6
Format. ROTRV rd, rt, rs SmartMIPS Crypto, MIPS32 Release 2
Purpose:

To execute alogical right-rotate of aword by a variable number of bits

Description: GPR[rd] ¢ GPR[rt] <> (right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3gy = 0))

UNPREDICTABLE

endif

s
temp

< GPRI[rsl,. g

< GPR[rtlg_q o || GPRITt]3;.

GPR[rd]« temp

Exceptions:

Reserved Instruction

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

then

235

Floating Point Round to Long Fixed Point ROUND.L.fmt

236

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 ROUND.L
fmt fs fd
010001 00000 001000
6 5 5 5 5 6
Format: ROUND.L.S £d, fs MIPS64, MIPS32 Release 2
ROUND.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose:
To convert an FP value to 64-bit fixed point, rounding to nearest
Description: FPR[fd] « convert_and_round (FPR[fs])
The value in FPR fs, in format fnt, is converted to a value in 64-bit long fixed point format and rounded to near-
est/even (rounding mode 0). The result is placed in FPR fd.
When the source value is Infinity, NaN, or rounds to an integer outside the range -25 to 283-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation
exception is taken immediately. Otherwise, the default result, 252-1, is written to fd.
Restrictions:
Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.
The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.
Operation:
StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Round to Long Fixed Point (cont.) ROUND.L.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 237

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Round to Word Fixed Point ROUND.W.fmt

238

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 ROUND.W
fmt fs fd
010001 00000 001100
6 5 5 5 5 6
Format: ROUND.W.S £d, fs MIPS32
ROUND.W.D £d, fs MIPS32
Purpose:
To convert an FP value to 32-bit fixed point, rounding to nearest
Description: FPR[fd] « convert_and_round (FPR[fs])
Thevauein FPR fs, in format fnt, is converted to avalue in 32-hit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR fd.
When the source value is Infinity, NaN, or rounds to an integer outside the range -231t0 281-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation
exception is taken immediately. Otherwise, the default result, 231-1, is written to fd.
Restrictions:
Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result
isUNPREDICTABLE.
The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Operation:
StoreFPR(fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Round to Word Fixed Point (cont). ROUND.W.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 239

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Reciprocal Square Root Approximation RSQRT.fmt

240

31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RSQRT
fmt fs fd
010001 00000 010110
6 5 5 5 5 6
Format: RsSQRT.s fd, fs MIPS64, MIPS32 Release 2
RSQRT.D fd, fs MIPS64, MIPS32 Release 2
Purpose:
To approximate the reciprocal of the square root of an FP value (quickly)
Description: FPR[fd] ¢« 1.0 / sqrt (FPR[fs])
Thereciprocal of the positive square root of the value in FPR fsis approximated and placed into FPR fd. The operand
and result are valuesin format fmt.
The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|IEEE 754 Floating Point standard. The computed result differs from both the exact result and the |EEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).
The effect of the current FCSR rounding mode on the result is implementation dependent.
Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.
The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.
Theresult of RSQRT.D is UNPREDICTABLE if the processor is executing in 16 FP registers mode.
Operation:
StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))
MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Reciprocal Square Root Approximation (cont.) RSQRT.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS32® Architecture For Programmers Volume I, Revision 2.50 241

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Byte SB

31 26 25 21 20 16 15 0
SB
base rt offset
101000
6 5 5 16
Format: sSB rt, offset (base) MIPS32
Purpose:

To store a byte to memory

Description: memory [GPR [base] + offset] ¢« GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:
vAddr < sign_extend(offset) + GPR[base]
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, STORE)
pAddr « pAddrpgrse-1. 2 || (pAddr; , xor ReverseEndian?)

bytesel < vAddr, , xor BigEndianCPU?
dataword — GPR[rt] 31-8*bytesel..0 | | Oskbytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

242 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Conditional Word scC

31 26 25 21 20 16 15 0
SC
base rt offset
111000
6 5 5 16
Format: sc rt, offset (base) MIPS32
Purpose:

To store aword to memory to complete an atomic read-modify-write
DeSCI’iptiOI’]: if atomic_update then memory[GPR[base] + offset] - GPR[rt], GPR[rt] ¢ 1 else
GPR[rt] < 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW seguence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

» The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.
» A 1, indicating success, iswritten into GPR rt.

Otherwise, memory is not modified and a0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC falls:

* A coherent storeis completed by another processor or coherent I/0O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it
is at least one word and at most the minimum page size.

* An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

» A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

 Theinstructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for
instruction words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:
» Execution of SC must have been preceded by execution of an LL instruction.

» An RMW sequence executed without intervening events that would cause the SC to fail must use the same
addressinthe LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm areidentical.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 243
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Conditional Word (cont.) SC

244

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

» Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

* /O System: To provide atomic RMW with a coherent 1/O system, all accessesto the location must be made
with amemory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed |ocation must have a memory access type of cached noncoherent or cached coherent; if it does not, the
resultis UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset) + GPR[base]
if vAddr; # 07 then
SignalException (AddressError)
endif
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, STORE)
dataword¢- GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt]« 03! || LIbit

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Conditional Word (cont.) SC

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1l, (TO) # load counter
ADDI T2, Tl, 1 # increment
SC T2, (TO0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 245
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Software Debug Breakpoint SDBBP

31 26 25 6 5 0
SPECIAL2 SDBBP
code
011100 111111
6 20 6
Format: SDBBP code EJTAG
Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executedthe exception is a Debug Mode Exception, which setsthe
Debugpexccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug exception

handler, and is retrieved by the debug exception handler only by loading the contents of the memory word containing
the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()
else
SignalDebugModeBreakpointException ()
endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

246 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Doubleword from Floating Point SDC1

31 26 25 21 20 16 15 0
SDC1
base ft offset
111101
6 5 5 16
Format: spcl ft, offset (base) MIPS32
Purpose:

To store a doubleword from an FPR to memory

Description: memory [GPR [base] + offset] «FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword ¢« ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)paddr <« paddr xor
((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoublewords; o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
StoreMemory (CCA, WORD, datadoublewordgs 35, pPAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50 247

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Doubleword from Coprocessor 2 SDC2

248

31 26 25 21 20 16 15 0
SDC2
base rt offset
111110
6 5 5 16
Format: spc2 rt, offset (base) MIPS32
Purpose:

To store a doubleword from a Coprocessor 2 register to memory

Description: memory [GPR [base] + offset] « CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
An Address Error exception occurs if EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:
vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, STORE)
lsw ¢« CPR[2,rt,0]
msw < CPR[2,rt+1,0]
paddr <« paddr xor ((BigEndianCPU xor ReverseEndian)||02)
StoreMemory (CCA, WORD, 1lsw, pAddr, vAddr, DATA)
paddr <« paddr xor 0bl00
StoreMemory (CCA, WORD, msw, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Doubleword Indexed from Floating Point SDXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 SDXC1
base index fs
010011 00000 001001
6 5 5 5 5 6
Format: spxcl fs, index(base) MIPS64

MIPS32 Release 2

Purpose:
To store a doubleword from an FPR to memory (GPR+GPR addressing)

Description: memory [GPR[base] + GPR[index]] ¢« FPR[fs]

The 64-bit doubleword in FPR fsis stored in memory at the location specified by the aligned effective address. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:
An Address Error exception occurs if EffectiveAddress, g # 0 (not doubleword-aligned).

Operation:

vAddr <« GPR[base] + GPR[index]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
datadoubleword ¢ ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)paddr ¢ paddr xor
((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoublewords, o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
StoreMemory (CCA, WORD, datadoublewordgs 3,5, pPAddr, vAddr+4, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction, Watch.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 249

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Sign-Extend Byte SEB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 SEB BSHFL
rt rd
011111 00000 10000 100000
6 5 5 5 5 6
Format: seb rd, rt MIPS32 Release 2
Purpose:

To sign-extend the least significant byte of GPR rt and store the value into GPR rd.

Description: GPR[rd] « SignExtend (GPR[rt]l,;)

The least significant byte from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] <¢-sign_extend(GPR[rt],;)
Exceptions:
Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend aword to a doubleword. These instructions do not exist because there are functionally-equivalent
instructions aready in the instruction set. The following table shows the instructions providing the equivalent func-

tions.
Expected I nstruction Function Equivalent Instruction
ZEB rX,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry, OXFFFF
250 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Sign-Extend Halfword SEH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 SEH BSHFL
rt rd
011111 00000 11000 100000
6 5 5 5 5 6
Format: seh rd, rt MIPS32 Release 2
Purpose:

To sign-extend the least significant halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] « SignExtend(GPR[rtlis o)

The least significant halfword from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] <¢-sign_extend(GPR[rtl.5)
Exceptions:
Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */
seh tl, tO /* tl = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.
MIPS32® Architecture For Programmers Volume I, Revision 2.50 251

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Sign-Extend Halfword, cont. SEH

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend aword to a doubleword. These instructions do not exist because there are functionally-equival ent
instructions aready in the instruction set. The following table shows the instructions providing the equivalent func-

tions.
Expected I nstruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OxXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry, OxFFFF

252 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Halfword SH
31 26 25 21 20 16 15 0
SH
base rt offset
101001
6 5 5 16
Format: SH rt, offset (base) MIPS32

Purpose:
To store a halfword to memory

Description: memory [GPR [base] + offset] ¢« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

PAddr ¢ pAddrpgrgp-1..2 || (pAddrl, xor (ReverseEndian || 0))
bytesel« vAddrl; , xor (BigEndianCPU || 0)

datawordé GPR[rtlsi_gspytesel..o || p8rbytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

253

Shift Word Left Logical SLL

254

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SLL
rt rd sa
000000 00000 000000
6 5 5 5 5 6
Format: sLL rd, rt, sa MIPS32
Purpose:

To left-shift aword by a fixed number of bits

Description: GPR[rd] ¢« GPR[rt] << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:
S — sa
temp ¢« GPR[rt] (31-s)..0 | | 0°s
GPR[rd]« temp

Exceptions:

None

Programming Notes:
SLL r0, rO, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL rO, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Shift Word Left Logical Variable SLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SLLV
rs rt rd
000000 00000 000100
6 5 5 5 5 6
Format: sLLV rd, rt, rs MIPS32
Purpose:

To left-shift aword by a variable number of bits

Description: GPR[rd] < GPR[rt] << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the result
word is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions: None

Operation:
S < GPRI[rsl,. g
temp ¢« GPRI[rt] 3;-¢)..0 || 0°

GPR[rd]« temp
Exceptions: None

Programming Notes:
None

MIPS32® Architecture For Programmers Volume I, Revision 2.50 255
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than SLT

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SLT
rs rt rd
000000 00000 101010
6 5 5 5 5 6
Format: sLT rd, rs, rt MIPS32
Purpose:

To record the result of aless-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the comparison in
GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] « OQCPREEN-1 || 1
else
GPR[rd] ¢« OQCPRLEN
endif

Exceptions:
None

256 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than Immediate SLTI
31 26 25 21 20 16 15 0
SLTI
rs rt immediate
001010
6 5 5 16
Format: SLTI rt, rs, immediate MIPS32

Purpose:

To record the result of aless-than comparison with a constant

Description: GPR[rt] « (GPR[rs] < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the Boolean result of
the comparison in GPR rt. If GPR rsisless than immediate, the result is 1 (true); otherwise, it isO (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate)

GPR[rt] « OQCPRREN-1)| 1

else

GPR[rt]

endif

Exceptions:
None

«— OGPRLEN

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

then

257

Set on Less Than Immediate Unsigned SLTIU

31 26 25 21 20 16 15 0

SLTIU
rs rt immediate
001011
6 5 5 16

Format: SLTIU rt, rs, immediate MIPS32

Purpose:

258

To record the result of an unsigned less-than comparison with a constant

Description: GPR[rt] « (GPR[rs] < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and record the Boolean
result of the comparisonin GPR rt. If GPR rsisless than immediate, theresult is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,

max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then

GPR[rt] « OQCPREEN-1 ||
else

GPR[rt] ¢« OQCPRLEN
endif

Exceptions:

None

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than Unsigned SLTU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SLTU
rs rt rd
000000 00000 101011
6 5 5 5 5 6
Format: sSLTU rd, rs, rt MIPS32
Purpose:

To record the result of an unsigned less-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the comparisonin
GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

if (0 || GPRI[rs]) < (0 || GPR[rt]) then
GPR[rd] « OQCPREEN-1 || 1

else
GPR[rd] ¢« QCFRLEN

endif

Exceptions:
None

MIPS32® Architecture For Programmers Volume I, Revision 2.50 259
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Square Root SQRT.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 SQRT

fmt fs fd
010001 00000 000100
6 5 5 5 5 6
Format: SQRrRT.s fd, fs MIPS32
SQRT.D fd, fs MIPS32
Purpose:

To compute the square root of an FP value

Description: FPR[fd] « SQRT(FPR[fs])

The sguare root of the value in FPR fsis calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR fd. The operand and result are values in format fmt.

If the valuein FPR fs correspondsto — 0, the result is— 0.

Restrictions:
If thevaluein FPR fsisless than O, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, SquareRoot (ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Inexact, Unimplemented Operation

260 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Shift Word Right Arithmetic SRA
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 SRA
rt rd
000000 00000 000011
6 5 5 5 6

Format: sra rd, rt, sa MIPS32

Purpose:

To execute an arithmetic right-shift of aword by a fixed number of bits

Description: GPR[rd] ¢ GPR[rt] >> sa

(arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied

bits; the word result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:
None

Operation:

s
temp
GPR[rd]

< sa
«— (GPR[I‘C]31)S || GPR[rtls;, ¢

«— temp

Exceptions: None

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

261

Shift Word Right Arithmetic Variable SRAV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SRAV
rs rt rd
000000 00000 000111
6 5 5 5 5 6
Format: srav rd, rt, rs MIPS32
Purpose:

To execute an arithmetic right-shift of aword by a variable number of bits

Description: GPR[rd] ¢ GPR[rt] >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.
Restrictions:

None

Operation:

s < GPR[rsl,
temp ¢« (GPR[rtl;;)® || GPRIrtls; o
GPR[rd] ¢« temp

Exceptions:
None

262 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Shift Word Right Logical SRL
31 26 25 22 21 20 16 15 11 10 0
SPECIAL R SRL
0000 0 rt rd
000000 000010
6 4 1 5 5 6
Format: SrRL rd, rt, sa MIPS32

Purpose:

To execute alogical right-shift of aword by afixed number of bits

Description: GPR[rd] ¢« GPR[rt] >> sa

(logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word

result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s
temp

<— sa
« 0% || GPRIrtls; o

GPR[rd] ¢« temp

Exceptions:
None

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

263

Shift Word Right Logical Variable SRLV

31 26 25 21 20 16 15 11 10 7 6 5 0
SPECIAL R SRLV
rs rt rd 0000 0
000000 000110
6 5 5 5 4 1 6
Format: SrRLV rd, rt, rs MIPS32
Purpose:

To execute alogical right-shift of aword by a variable number of bits

Description: GPR[rd] ¢« GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The hit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:
None
Operation:
s < GPR[rsl,
temp < 0% || GPRIrtls; o

GPR[rd] ¢« temp

Exceptions:
None

264 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Superscalar No Operation SSNOP

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 1 SLL
000000 00000 00000 00000 00001 000000
6 5 5 5 5 6
Format: ssNop MIPS32
Purpose:

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, thisinstruction is a NOP that takes an issue slot.

Restrictions:
None

Operation:
None

Exceptions:
None

Programming Notes:

SSNOP is intended for use primarily to alow the programmer control over CPO hazards by converting instructions
into cyclesin a superscalar processor. For example, to insert at least two cycles between an MTCO and an ERET, one
would use the following sequence:

mtcO X,Y
ssnop
ssnop
eret

Based on the normal issues rules of the processor, the MTCO issuesin cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 265
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Subtract Word SUB

266

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SuUB
rs rt rd
000000 00000 100010
6 5 5 5 5 6
Format: suB rd, rs, rt MIPS32
Purpose:

To subtract 32-bit integers. If overflow occurs, then trap

Description: GPR[rd] ¢« GPR[rs] - GPR[rt]

The 32-hit word value in GPR rt is subtracted from the 32-hit value in GPR rsto produce a 32-bit result. If the sub-
traction resultsin 32-bit 2's complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp < (GPR[rslii||GPRIrslsi o) — (GPR[rtlsq||GPR[rtls; o)
if temp;, # tempsz; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temps3;
endif
Exceptions:

Integer Overflow

Programming Notes:
SUBU performs the same arithmetic operation but does not trap on overflow.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Subtract SUB.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 SUB
fmt ft fs fd
010001 000001
6 5 5 5 5 6
Format: suB.s fd, fs, MIPS32

SUB.D fd, fs, MIPS32
SUB.PS fd, fs, ft MIPS64, MIPS32 Release 2
Purpose:
To subtract FP values
Description: FPR[fd] « FPR[fs] - FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPR fsand FPR ft independently, and ORs together any gen-

erated exceptional conditions.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-

DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Theresult of SUB.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

fmt)

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

MIPS32® Architecture For Programmers Volume I, Revision 2.50

—¢fmt ValueFPR(ft,

fmt))

267

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Subtract Unsigned Word SUBU

268

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SUBU
rs rt rd
000000 00000 100011
6 5 5 5 5 6
Format: suBU rd, rs, rt MIPS32
Purpose:

To subtract 32-bit integers

Description: GPR[rd] ¢« GPR[rs] - GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.
Restrictions:

None

Operation:
temp < GPR[rs] - GPR[rt]
GPR[rd]« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Doubleword Indexed Unaligned from Floating Point SUXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X 0 SUXC1
base index fs
010011 00000 001101
6 5 5 5 5 6
Format: suxcl fs, index(base) MIPS64, MIPS32 Release 2
Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory [(GPR[base] + GPR[index])pgrzg-1..3] < FPRIfs]

The contents of the 64-bit doubleword in FPR fsis stored at the memory location specified by the effective address.
The contents of GPR index and GPR base are added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress, j are ignored.

Restrictions:
Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr < (GPR[base]+GPR[index])¢; 3 || 03

(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)

datadoubleword ¢ ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)paddr ¢ paddr xor
((BigEndianCPU xor ReverseEndian) || 02)

StoreMemory (CCA, WORD, datadoublewords, , pAddr, vAddr, DATA)

paddr ¢« paddr xor 0b100

StoreMemory (CCA, WORD, datadoublewordgs 3,5, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50 269

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Word SW
31 26 25 21 20 16 15 0
S
base rt offset
101011
6 5 5 16
Format: sw rt, offset (base) MIPS32

270

Purpose:
To store aword to memory

Description: memory [GPR[base] + offset] ¢ GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[base]

if vAddr; , # 02 then

SignalException (AddressError)

endif

(pAddr, CCA)« AddressTranslation

dataword¢« GPR[rt]

(vAddr, DATA, STORE)

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Word from Floating Point SWC1
31 26 25 21 20 16 15 0
SWC1
base ft offset
111001
6 5 5 16
Format: swcl ft, offset (base) MIPS32

Purpose:
To store aword from an FPR to memory

Description: memory [GPR [base] + offset] « FPR[ft]

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The

16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; o # 0° then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory (CCA, WORD, dataword, pAddr, vAddr,

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

271

Store Word from Coprocessor 2 SWC2
31 26 25 21 20 16 15 0
SWC2
base rt offset
111010
6 5 5 16
Format: swc2 rt, offset (base) MIPS32

272

Purpose:

To store aword from a COP2 register to memory

Description: memory [GPR [base] + offset] « CPR[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o= 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset)

if vAddr, , # 0° then

+ GPR[base]

SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)

dataword <« CPR[2,rt,0]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Word Left SWL

31 26 25 21 20 16 15 0
SWL
base rt offset
101010
6 5 5 16
Format: swL rt, offset (base) MIPS32
Purpose:

To store the most-significant part of aword to an unaligned memory address

Description: memory [GPR [base] + offset] ¢« GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same number of the
most-significant (Ieft) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2.5 form an unaligned word starting at location 2. A part of W, 2 bytes, islocated in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from
the source register into these 2 bytesin memory. Next, the complementary SWR stores the remainder of the unaligned
word.

Figure 3-9 Unaligned Word Store Using SWL and SWR

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most —significance— least

|0|1 2|3|4|5 6|7|8|...| Memory: Initial contents

o] 1[E[F] 4] 5] 6] . |Afterexecuting sur $24,2(50)

| o| 1 E| Flc|H]|s | |ThenafterSWR $24,5($0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr 1..0)—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 273
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Word Left (cont.) SWL

Figure 3-10 Bytes Stored by an SWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <«higendian 64-bit register
Lili]k]|1] offset (vAddry) |A[B|C|[D|E|F[G|H]|
3 2 1 0 <«little-endian most — significance — least
most least 32-bitregister | E| F| G| H|
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian
byte ordering vAddry o byte ordering

E F G H 0 i] k|E
i |E F G 1 i j|E F
i j|E F 2 i|E F G
i | k|E 3 E F G H

Restrictions:

None

Operation:

vAddr <« sign_extend(offset) + GPR[base]
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, STORE)

PAAAr < pAddrpgrze-1. 2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr ¢« pAddrpgrpm-1. 2 || 02
endif
byte <« vAddr, o xor BigEndianCPU?
dataworde 02478*bvte || GPRITt]31, 24-g*byte

StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error , Watch

274 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Word Right SWR

31 26 25 21 20 16 15 0
SWR
base rt offset
101110
6 5 5 16
Format: SwWR rt, offset (base) MIPS32
Purpose:

To store the least-significant part of aword to an unaligned memory address

Description: memory [GPR [base] + offset] ¢« GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, isin the aligned word containing EffAddr. The same number of the
least-significant (right) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Figure 3-11 Unaligned Word Store Using SWR and SWL

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

|0|1 2|3|4|5 6|7|8|...| Memory: Initial contents

GPR 24

lol1]2]3]G|H] 6| .. |Afterexecutingsur $24,5(50)
o] 1[E[F]c|H]| 6] . |Thenatersur $24,2(30)
MIPS32® Architecture For Programmers Volume I, Revision 2.50 275

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Word Right (cont.) SWR

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

Figure 3-12 Bytes Stored by SWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ¢« big-endian 64-bit register
Lii]«x]1] offset (vAddry) |A|[B|C|D|E[F|[G|H]|
3 2 1 0 <« little-endian most — significance — least
most least 32-bit register | E| F | G| H |
— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian byte

byte ordering ordering

Hlj k| 0 E F G H
G H|k | 1 F G HJ |
F G H|I 2 G H|k |
E F G H 3 Hlj Kk I

Restrictions:
None
Operation:

vAddr <« sign_extend(offset) + GPR[base]
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, STORE)

pPAddr < pAddrpgrze-1. 2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then

pAddr ¢« pAddrpsizpi..2 || 0
endif

byte ¢« vAddr,; , xor BigEndianCPU?
datawordé— GPR[rtl3i_gepyre | | o8 byte
StoreMemory (CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invaid, TLB Modified, Bus Error, Address Error, Watch

276 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Store Word Indexed from Floating Point SWXC1
31 26 25 21 20 16 15 11 10 5 0
COP1X 0 SWXC1

base index fs
010011 00000 001000
6 5 5 5 5 6
Format: swxcl fs, index(base) MIPS64

Purpose:

To store aword from an FPR to memory (GPR+GPR addressing)

Description: memory [GPR [base] + GPR[index]] « FPR[fs]

MIPS32 Release 2

The low 32-bit word from FPR fsis stored in memory at the location specified by the aligned effective address. The

contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o= 0 (not word-aligned).

Operation:

vAddr ¢ GPR[base] + GPR[index]
if vAddr; # 0° then

SignalException (AddressError)

endif

(pAddr,

CCA) ¢« AddressTranslation (vAddr,

dataword <« ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory (CCA, WORD, dataword, pAddr,

Exceptions:

vAddr,

DATA, STORE)

DATA)

TLB Refill, TLB Invaid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

277

Synchronize Shared Memory SYNC

278

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SYNC
iype
000000 00 0000 0000 0000 0 001111
6 15 5 6
Format: syNC (stype = 0 implied) MIPS32
Purpose:

To order loads and stores.

Description:
Smple Description:

SY NC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the SYNC
must be completed before the |oads and stores after the SYNC are allowed to start.

L oads are completed when the destination register iswritten. Stores are completed when the stored valueisvisibleto
every other processor in the system.

SYNC isrequired, potentialy in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release 2 of
the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC isrequired on some implementations on entry to and exit from Debug Mode to guarantee that
memory affects are handled correctly.

Detailed Description:

When the stype field has a value of zero, every synchronizable load and store that occurs in the instruction stream
beforethe SYNC instruction must be globally performed before any synchronizable load or store that occurs after the
SYNC can be performed, with respect to any other processor or coherent 1/0 module.

SYNC does not guarantee the order in which instruction fetches are performed. The stype values 1-31 are reserved
for future extensions to the architecture. A value of zero will always be defined such that it performs all defined
synchronization operations. Non-zero values may be defined to remove some synchronization operations. As such,
software should never use a hon-zero value of the stype field, as this may inadvertently cause future failures if
non-zero values remove synchronization operations.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory (cont.) SYNC

Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent 1/0 system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of aload on processor A has been determined with respect to processor or coherent I/0O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent 1/0 module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent 1/0O modules capable of storing to the [ocation.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of |oading from the location.

Coherent 1/0 module: A coherent I/O module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
storesto locations with a memory access type of cached coherent.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 279
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory (cont.) SYNC

280

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:
SyncOperation (stype)

Exceptions:
None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; thisis known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share datain parallel programs.

When al processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actionsin the programs. For such a system, SYNC
has the same effect as a NOP. Executing SY NC on such a system is not necessary, but neither isit an error.

If amultiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of al loads and storesin one group is seen by all processors before the effect of any
load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing pro-
cessor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share datain parallel programs for that system.)

The behavior of aload or store using one memory access type is UNPREDICTABLE if aload or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not ater this behavior.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory (cont.) SYNC

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined. The effect of SYNC on reads or writes to memory caused by privileged implementation-specific instructions,
such as CACHE, aso is not defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value

LI R2, 1

SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LT R2, 1
1: Lw R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

Prefetch operations have no effect detectable by User-mode programs, so ordering the effects of prefetch operationsis
not meaningful.

The code fragments above shows how SY NC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared datais valid.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 281
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective SYNCI

282

31

26 25 21 20 16 15 0

REGIMM SYNCI
base offset
000001 11111

6 5 5 16

Format: SYNCI offset (base) MIPS32 Release 2

Purpose:
To synchronize all caches to make instruction writes effective.

Description:

Thisinstruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in al operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in al caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as abyproduct of thisinstruc-
tion. Thisinstruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.

A Cache Error exception may occur as a byproduct of thisinstruction. For example, if awriteback operation detects a
cache or bus error during the processing of the operation, that error isreported viaa Cache Error exception. Similarly,
aBus Error Exception may occur if abus operation invoked by thisinstruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It isimplementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.

Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were prevsiously locked with the CACHE instruction. If cor-
rect software operation depends on the state of alocked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts only on the current processor. It doesn’t not affect the caches on other processorsin a
multi-processor system, except as required to perform the operation on the current processor (as might be the case if
multiple processors share an L2 or L3 cache).

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
sequence is not followed.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective, cont. SYNCI

Operation:

vaddr ¢« GPR[base] + sign_extend(offset)
SynchronizeCacheLines (vaddr) /* Operate on all caches */

Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception

TLB Invalid Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

MIPS32® Architecture For Programmers Volume I, Revision 2.50 283
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Synchronize Caches to Make Instruction Writes Effective, cont.

284

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows aroutine which can be called after the

SYNCI

new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be replaced

with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the

JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruc-
tionisrequired between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*

* This routine makes changes to the instruction stream effective to the
* hardware.
* On return,

*

* Inputs:

* a0
* al
*/

addu
rdhwr

beqg
nop
10: synci
sltu
bne
addu
sync
20: jr.hb
nop

It should be called after the instruction stream is written.

the new instructions are effective.

= Start address of new instruction stream
of new instruction stream

= Size, in bytes,
al, a0, al

v0, HW_SYNCI_Step
v0, zero, 20f
0(a0)

vl, a0, al

vl, zero, 10b

a0, a0, vO

ra

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Calculate end address + 1 */

Get step size for SYNCI from new */
Release 2 instruction */

If no caches require synchronization, */
branch around */

Synchronize all caches around address */

Compare current with end address */

Branch if more to do */

Add step size in delay slot */

Clear memory hazards */

Return, clearing instruction hazards */

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

System Call

SYSCALL

31 26 25 6 5
SPECIAL SYSCALL
code
000000 001100
6 20 6
Format: syscaLL MIPS32

Purpose:

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:
None

Operation:

SignalException (SystemCall)

Exceptions:
System Call

MIPS32® Architecture

For Programmers Volume Il, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

285

Trap if Equal TEQ

286

31 26 25 21 20 16 15 6 5 0
SPECIAL TEQ
rs rt code
000000 110100
6 5 5 10 6
Format: TEQ rs, rt MIPS32
Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsis equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:
None

Operation:

if GPR[rs] = GPR[rt] then
SignalException (Trap)
endif

Exceptions:
Trap

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Trap if Equal Immediate TEQI
31 26 25 21 20 16 15 0
REGIMM TEQI
rs immediate
000001 01100
6 5 5 16
Format: TEQI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description:

if GPR[rs]

immediate then Trap

Compare the contents of GPR rs and the 16-hit signed immediate as signed integers; if GPR rsis equal to immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs]

endif

Exceptions:
Trap

= sign_extend (immediate)
SignalException (Trap)

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

then

287

Trap if Greater or Equal

288

31

26 25

21 20

16 15

TGE

SPECIAL
000000

IS

rt

code

TGE
110000

6

Format: TGE rs, rt

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs]

2 GPR[rt]

10

then Trap

MIPS32

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsis greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs]

2 GPR[rt]

then

SignalException (Trap)

endif

Exceptions:
Trap

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Trap if Greater or Equal Immediate TGEI
31 26 25 21 20 16 15 0
REGIMM TGEI
rs immediate
000001 01000
6 5 5 16
Format: TGEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs]

> immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis greater than or equal

to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs]

SignalException (Trap)

endif

Exceptions:
Trap

> gsign_extend (immediate) then

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

289

Trap if Greater or Equal Immediate Unsigned TGEIU

290

31 26 25 21 20 16 15 0
REGIMM TGEIU
rs immediate
000001 01001
6 5 5 16
Format: TGEIU rs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] > immediate then Trap

Compare the contents of GPR rs and the 16-hit sign-extended immediate as unsigned integers; if GPR rs is greater
than or equal to immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:
None

Operation:

if (0 || GPR[rs]) 2 (0 || sign_extend(immediate)) then
SignalException (Trap)
endif

Exceptions:
Trap

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Trap if Greater or Equal Unsigned TGEU
31 26 25 21 20 16 15 0
SPECIAL TGEU
rs rt code
000000 110001
6 5 5 10 6

Format: TGEU rs, rt MIPS32
Purpose:
To compare GPRs and do a conditional trap
Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rsis greater than or equal to GPR rt, then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs])
SignalException (Trap)

endif

Exceptions:
Trap

(0 || GPR[rt]) then

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

291

292

Probe TLB for Matching Entry TLBP

31 26 25 24 6 5 0
COPO CO 0 TLBP
010000 1 000 0000 0000 0000 0000 001000
6 1 19 6
Format: TLBP MIPS32
Purpose:

To find amatching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index < 1 || UNPREDICTABLE>!
for i in 0...TLBEntries-1
if ((TLB[ilypyy and not (TLB[ilyaek)) =
(EntryHiypy, and not (TLB[ilyzex))) and
((TLB[i]lg = 1) or (TLB[ilagrp = EntryHipgip))then
Index « i
endif
endfor

Exceptions:
Coprocessor Unusable
Machine Check

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO (6(0) 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6

Format: TLBR MIPS32
Purpose:
To read an entry fromthe TLB.
Description:

The EntryHi, EntryLo0, EntryLol, and PageMask registers are loaded with the contents of the TLB entry pointed to
by the Index register. In Release 1 of the Architecture, it isimplementation dependent whether multiple TLB matches
are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches only on
aTLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. Note that
the value written to the EntryHi, EntryLoO, and EntrylL ol registers may be different from that originally written to the
TLB viathese registersin that:

» Thevaluereturned in the VPN2 field of the EntryHi register may havethose bits set to zero corresponding to the
one hitsin the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed after aTLB
entry iswritten and then read.

e Thevalue returned in the PFN field of the EntryL.oO and EntrylL ol registers may havethose bits set to zero
corresponding to the one bitsin the Mask field of the TLB entry (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or
zeroed after aTLB entry iswritten and then read.

e Thevalue returned in the G bit in both the EntryLo0O and EntryLo1l registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLo0 and EntryLol when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entriesin the processor.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 293
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR

Operation:

1 ¢« Index

if i > (TLBEntries - 1) then
UNDEFINED

endif

PageMaskygr ¢ TLB[1lyagk

EntryHi <«

(TLB[1]ypyy and not TLB[ily.,ex) || # Masking implementation dependent
0°> || TLBlilasmp

EntryLol « 0% ||
(TLB[i]ppy; and not TLB[ily.ex) || # Masking mplementation dependent
TLB[iley || TLBI[ilpy || TLBIilys || TLBIilg

EntryLoQ <« 0° ||
(TLB[1]ppyo @nd not TLB[ily.,ex) || # Masking mplementation dependent
TLB[ilgo || TLB[ilpy || TLBI[ilyy || TLBIilg

Exceptions:
Coprocessor Unusable
Machine Check

294 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry TLBWI
31 26 25 24 6 5 0
COPO CO 0 TLBWI
010000 000 0000 0000 0000 0000 000010
6 1 19 6
Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLoO, EntryLol, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWI. In
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLoO, and EntryLol registers, in that:

» Thevalue written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during a TLB write.

» Thevaluewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one hitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during a TLB write.

» Thesingle G bit inthe TLB entry is set from the logical AND of the G hitsin the EntryL.oO and EntryLol

registers.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32® Architecture

For Programmers Volume Il, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

295

Write Indexed TLB Entry TLBWI

Operation:

i « Index

TLB[i]yask ¢ PageMasky,gx

TLB[ilypyy ¢ EntryHiypy, and not PageMasky,c, # Implementation dependent
TLB([1]agrp ¢ EntryHixgp
TLB[i]g ¢ EntryLolg and EntryLoOg
TLB[i]ppy1 ¢ EntryLolppy and not PageMasky,qx # Implementation dependent
TLB[i]q; ¢ EntryLolc
TLB[i]p; ¢« EntryLolp
TLB[i]y; ¢« EntryLoly

TLB[i]ppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[i]cp ¢ EntryLoO.

TLB[i]lpy ¢ EntryLoOp

TLB[il]yo ¢ EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

296 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Write Random TLB Entry

TLBWR

31 26 25 24
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format: TLBWR MIPS32

Purpose:

To writea TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLoO, EntryLol,
and PageMask registers. It isimplementation dependent whether multiple TLB matches are detected onaTLBWR. In
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLoO, and EntryLol registers, in that:

» Thevalue written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one

bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during aTLB write.

e Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to

the one hitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during aTLB write.

e Thesingle G bitinthe TLB entry is set from the logical AND of the G hitsin the EntryLoO and EntryLol
registers.
Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

297

Write Random TLB Entry TLBWR

Operation:

i < Random

TLB[i]yask ¢ PageMasky,gx

TLB[ilypny ¢ EntryHiypy, and not PageMasky,qr # Implementation dependent
TLB[1i]agrp ¢ EntryHixgp
TLB[i]g ¢ EntryLolg and EntryLoOg
TLB[ilppy1 ¢ EntryLolppy and not PageMasky,qx # Implementation dependent
TLB[i]q; ¢ EntryLolg
TLB([i]p; ¢« EntryLolp
TLB([i]y; ¢« EntryLoly

TLB[i]ppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[i]cp ¢ EntryLoO¢

TLB[i]lpy ¢ EntryLoOp

TLB[ilyo ¢ EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

298 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Trap if Less Than TLT
31 26 25 21 20 16 15 0
SPECIAL TLT
rs rt code
000000 110010
6 5 5 10 6
Format: TLT rs, rt MIPS32

Purpose:

To compare GPRs and do a conditiona trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsislessthan GPR rt, then take a Trap excep-

tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt]

then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

299

Trap if Less Than Immediate TLTI
31 26 25 21 20 16 15 0
REGIMM TLTI
rs immediate
000001 01010
6 5 5 16
Format: TLTI rs, immediate MIPS32

300

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsislessthan immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs]

SignalException (Trap)

endif

Exceptions:
Trap

< sign_extend(immediate) then

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Trap if Less Than Immediate Unsigned TLTIU

31 26 25 21 20 16 15 0

REGIMM TLTIU
rs immediate
000001 01011
6 5 5 16
Format: TLTIU rs, immediate MIPS32
Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rsis less than
immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then

SignalException (Trap)

endif

Exceptions:

Trap

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

301

Trap if Less Than Unsigned TLTU

302

31 26 25 21 20 16 15 6 5 0
SPECIAL TLTU
rs rt code
000000 110011
6 5 5 10 6
Format. TLTU rs, rt MIPS32
Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:
None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException (Trap)
endif

Exceptions:
Trap

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Trap if Not Equal TNE
31 26 25 21 20 16 15 0
SPECIAL TNE
rs rt code
000000 110110
6 5 5 10 6
Format: TNE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] # GPR[rt] then Trap
Compare the contents of GPR rs and GPR rt as signed integers; if GPR rsis not equal to GPR rt, then take a Trap

exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] # GPR[rt]
SignalException (Trap)

endif

Exceptions:
Trap

then

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

303

Trap if Not Equal Immediate TNEI
31 26 25 21 20 16 15 0
REGIMM TNEI
rs immediate
000001 01110
6 5 5 16
Format: TNEI rs, immediate MIPS32

304

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] # immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis not equal to imme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] # sign_extend(immediate) then
SignalException (Trap)

endif

Exceptions:
Trap

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 TRUNC.L

fmt fs fd
010001 00000 001001
6 5 5 5 5 6
Format: TRUNC.L.S fd, fs MIPS64, MIPS32 Release 2
TRUNC.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose:

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: FPR[fd] « convert_and_round(FPR[fs])

Thevauein FPR fs, in format fmt, is converted to avalue in 64-bit long fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -25 to 23-1, the result cannot be
represented correctly and an |EEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 26%-1, is written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

MIPS32® Architecture For Programmers Volume I, Revision 2.50 305

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Long Fixed Point (cont.) TRUNC.L.fmt
Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, |nexact

306 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Word Fixed Point TRUNC.W.fmt

31 26 25 21 20 16 15 11 10 6 5 0

COP1 0 TRUNC.W

fmt fs fd
010001 00000 001101
6 5 5 5 5 6
Format: TRUNC.w.S fd, fs MIPS32
TRUNC.W.D fd, fs MIPS32
Purpose:

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: FPR[fd] « convert_and_round(FPR[fs])

The value in FPR fs, in format fnt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). Theresult is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231t0 281-1, the result cannot be
represented correctly and an |EEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231-1, is written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

MIPS32® Architecture For Programmers Volume I, Revision 2.50 307
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Floating Point Truncate to Word Fixed Point (cont.) TRUNC.W.fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Invalid Operation, Overflow, Unimplemented Operation

308 MIPS32® Architecture For Programmers Volume II, Revision 2.50
Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Enter Standby Mode WAIT

31 26 25 24 6 5 0
COPO Cco WAIT
Implementation-Dependent Code
010000 1 100000
6 1 19 6
Format: waIT MIPS32
Purpose:

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usualy involving a lower power mode.
Software may use bits 24:6 of the instruction to communicate additional information to the processor, and the proces-
sor may use thisinformation as control for the lower power mode. A value of zero for bits 24:6 isthe default and must
bevalid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external reguest
occurs, and execution continues with the instruction following the WAIT instruction. It isimplementation-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart. The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 309

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Enter Standby Mode (cont.) WAIT

Operation:

I: Enter implementation dependent lower power mode
I+1l:/* Potential interrupt taken here */

Exceptions:
Coprocessor Unusable Exception

310 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Writeto GPR in Previous Shadow Set

WRPGPF

31 26 25 21 20 16 15 11 10 0
COPO WRPGPR rt rd 0
0100 00 01110 000 0000 0000
6 5 5 5 11

Format: WRPGPR rd, rt

Purpose:

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPRISRSCtlpgg, rd] ¢« GPRIrt]

MIPS32 Release 2

The contents of the current GPR rt is moved to the shadow GPR register specified by SRSCtlpsg (signifying the pre-

vious shadow set number) and rd (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

SGPR[SRSCt1lpgg,

Exceptions:

Coprocessor Unusable

Reserved Instruction

rd] < GPRI[rt]

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

311

Word Swap Bytes Within Halfwords WSBH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 WSBH BSHFL
rt rd
011111 00000 00010 100000
6 5 5 5 5 6
Format: wsbh rd, rt MIPS32 Release 2
Purpose:

To swap the bytes within each halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] « SwapBytesWithinHalfwords (GPR[rt])
Within each halfword of GPR rt the bytes are swapped, and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] «GPR[rtly; 16||GPRIrtls; 4| GPRIrtl; o GPRIrtl s g
Exceptions:
Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of aword value can be converted using the following sequence:

1w t0, 0(al) /* Read word value */
wsbh t0, tO0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */
wsbh t0, tO0 /* Convert endiannes of the halfwords */
seh tl, tO /* tl = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.
312 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exclusive OR XOR
31 26 25 21 20 16 15 11 10 0
SPECIAL 0 XOR

rs rt rd
000000 00000 100110
6 5 5 5 5 6
Format: XOR rd, rs, rt MIPS32

Purpose:

To do abitwise logical Exclusive OR

Description: GPR[rd] ¢« GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into

GPRrd.

Restrictions:

None

Operation:

GPR[rd]

Exceptions:
None

< GPR[rs] xor GPR[rt]

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

313

Exclusive OR Immediate XORI

314

31 26 25 21 20 16 15 0
XORI
rs rt immediate
001110
6 5 5 16
Format: XORI rt, rs, immediate MIPS32
Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: GPR[rt] ¢« GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ¢« GPR[rs] xor zero_extend(immediate)

Exceptions:
None

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Instruction Bit Encodings

A.1 Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book initalics.

When encoding an instruction, the primary opcode field is encoded first. Most opcode values completely specify an
instruction that has an immediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within aclass are
further specified by valuesin other fields. For instance, opcode REGIMM specifies the immediate instruction class,
which includes conditional branch and trap immediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32® |SA.

Figure A-1 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the opcode
field are listed in the leftmost columns of the table. Bits 28..26 of the opcode field are listed al ong the topmost rows of
the table. Both decimal and binary values are given, with the first three bits designating the row, and the last three bits
designating the column.

Aninstruction’s encoding isfound at the intersection of arow (bits 31..29) and column (bits 28..26) value. For instance,
the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Similarly, the
opcode value for EX2 is 64 (decimal), or 110100 (binary).

MIPS32® Architecture For Programmers Volume I, Revision 2.50 315

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

31 26 25 21 20 16 15 0
opcode rs rt immediate ‘
6 5 5 16

" —~ . X
Binary encoding of
opcode (28..26)
Decimal encoding of
/*\ opcode (28..26)
opcode | bits 28..26 \
Ty

0 1 2 3 4 5 6
bits 31..29 000 001 010 011 100 101 110 111

0 | 000
001
010
011 EX1
100
101
110 EX2

111
b

=

ol h|[WIN|F

Binary encoding of

Decimal encoding of ~ ©opcode (31..29)
opcode (31..29)

Figure A-1 Sample Bit Encoding Table

Tables A-2 through A-20 describe the encoding used for the MIPS32 I SA. Table A-1 describes the meaning of the
symbols used in the tables.

Table A-1 Symbols Used in the Instruction Encoding Tables

Symboal Meaning

Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

(Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
) Theinstruction word must be further decoded by examining additional tablesthat show valuesfor
another instruction field.

Operation or field codes marked with this symbol represent a valid encoding for a higher-order
B MIPSISA level or anew revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

Operation or field codes marked with this symbol represent instructions which were only legal if
64-hit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
v arelegal if 64-hit floating point operations are enabled. In other cases, executing such an
instruction must cause a Reserved I nstruction Exception (non-coprocessor encodings or

coprocessor instruction encodings for a coprocessor to which accessis allowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis not
allowed).

316 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables

Table A-1 Symbols Used in the I nstruction Encoding Tables

Symbol M eaning

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
9 with MIPS Technologies when one of these encodingsis used. If no instruction is encoded with

thisvalue, executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2
encodings or coprocessor instruction encodings for a coprocessor to which accessis allowed) or
aCoprocessor Unusable Exception (coprocessor instruction encodings for acoprocessor to which
accessis not allowed).

Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application Specific
€ Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

o Operation or field codes marked with this symbol are obsolete and will be removed from afuture
revision of the MIPS32 | SA. Software should avoid using these operation or field codes.

Operation or field codes marked with this symbol are valid for Release 2 implementations of the
@ architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A-2 M1 PS32 Encoding of the Opcode Field

opcode bits 28..26
0 1 2 3 4 5 6 7

bits31.29| 000 001 010 011 100 101 110 111

0] 000 | SPECIALS | REGIMM & J AL BEQ BNE BLEZ BGTZ

1] 001 | ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUl

2|00 | coPos COPL5 | coP265 | coPixis | BEQL BNELo | BLEZLO | BGTZLo

3| on B B B B SPECIAL25 | JALXe e SDE%A'-?’Z

4| 100 LB LH LWL Lw LBU LHU LWR B

5 | 101 B SH SwiL sw B B SWR CACHE

6 | 110 LL LWCL LWC26 PREF B LDCL LDC26 B

7 [11 sC SwCl SWC26 * B SDC1 SDC26 B

1. In Release 1 of the Architecture, the COP1X opcode was called COP3, and was available as another user-available coprocessor. In
Release 2 of the Architecture, afull 64-bit floating point unit is available with 32-bit CPUs, and the COP1X opcodeis reserved for
that purpose on al Release 2 CPUs. 32-bit implementations of Release 1 of the architecture are strongly discouraged from using
this opcode for a user-available coprocessor as doing so will limit the potential for an upgrade path to a 64-bit floating point unit.

2. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved
Instruction Exception for this opcode.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 317

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

Table A-3 M1PS32 SPECIAL Opcode Encoding of Function Field

function hits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 S MOVCI § RLS SRA SLLV * RLVS SRAV
1 | oo1 JR? JALR? MOVZ MOVN SYSCALL BREAK * SYNC
2| 010 MFHI MTHI MFLO MTLO B * B B
3| o011 MULT MULTU DIV DIVU B B B B
4 | 100 ADD ADDU suB SUBU AND OR XOR NOR
5| 101 * * SLT SLTU B B B B
6 | 110 TGE TGEU TLT TLTU TEQ * TNE *
7|11 p * B p B * p p
1. Specific encodings of thert, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP and EHB functions.
2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB
Table A-4 MIPS32 REGIMM Encoding of rt Field
[t | bits18.16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL ¢ BGEZL ¢ * * * *
1] o1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2| 10 | BLTZAL BGEZAL | BLTZALL ¢ | BGEZALL ¢ * * * *
3| 11 * * * * * * * SYNCI @
Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
[function | bhits2.0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL 0 MSUB MSUBU 0 0
1| 001 0 0 0 0 0 0 0 0
2 | 010 0 0 0 0 0 0 0 0
3| o011 0 0 0 0 0 0 0 0
4 | 100 CLzZ CLO 0 0 B B 0 0
5 | 101 0 0 0 0 0 0 0 0
6 | 110 0 0 0 0 0 0 0 0
7| 111 0 0 0 0 0 0 0 SDBBP G

Table A-6 M1PS32 SPECIAL3! Encoding of Function Field for Release 2 of the Architecture

function bits 2.0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | ooo EXT® B B B INS® B B B
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4| 100 | BSHFL ®3 * * * B * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7| 111 * * * RDHWR @ * * * *

318

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables

1. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved

Instruction Exception for this opcode and al function field values shown above.

Table A-8 M1PS32! SRL Encoding of Shift/Rotate

Table A-9 M1PS32! SRLV Encoding of Shift/Rotate

Table A-10 M1PS32 BSHFL Encoding of sa Field!

tf bit 16
0 1
MOVF MOVT

R bit 21
0 1
SRL ROTR

1. Release 2 of the Architecture added the
ROTR instruction. Implementations

of Release 1 of the Architecture ig-

nored bit 21 and treated the instruc-

tion asan SRL

R bit 6
0 1
SRLV ROTRV

1. Release 2 of the Architecture added the

ROTRV instruction.

tions of Release 1 of the Architecture

Implementa-

ignored bit 6 and treated the instruc-
tionasan SRLV

Table A-7 MIPS32 MOVCI Encoding of tf Bit

sa bits 8..6
0 1 2 3 4 5 6 7
bits 10..9 000 001 010 011 100 101 110 111
0| 00 WSBH
1] 01
2| 10 SEB
3 11 SEH

1. The safield is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are reserved for future use
by MIPS Technologies and may or may not cause a Reserved | nstruction exception.

Table A-11 MIPS32 COPO Encoding of rsField

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO B * * MTCO B * *
1| 01 * * RDPGPR ® | MFMCO! 5@ * * WRPGPR & *
== cos

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

319

Appendix A Instruction Bit Encodings

1. Release 2 of the Architecture added the MFMCO function, which is further decoded as the DI and El instructions.

Table A-12 M1 PS32 COPO Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI * * * TLBWR *
1 | oo1 TLBP * * * * * * *
2 | 010 * * * * * * * *
3| 011 ERET * * * * * * DERET ¢
4| 100 WAIT * * * * * * *
5 | 101 * * * * * * * *
6 | 110 * * * * * * * *
7 [111 * * * * * * * *

Table A-13 MIPS32 COP1 Encoding of rsField

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC1 B CFC1 MFHCl1 ® MTC1 B CTC1 MTHC1 @
1| 01 BC16 BC1ANY2 eV | BC1ANY4 deV * * * * *
2| 10 Sé Db * * W L& PSé *
3 11 * * * * * * * *

Table A-14 M1PS32 COP1 Encoding of Function Field When rs=S

function bits 2.0
0 1 2 3 4 5 6 7
hits5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SQRT ABS MoV NEG
1] 001 | ROUND.LV [TRUNC.LV CEILLV FLOORLV | ROUNDW | TRUNCW CEIL.W FLOOR.W
2 | 010 * MOVCF § MOVZ MOVN * RECIPV RSQRT V *
3| o011 * * * * RECIP2eV | RECIP1eV | RSQRT1eV | RSQRT2&eV
4 | 100 * CVTD * * CVT.W CVT.LV CVT.PSV *
5 101 * * * * * * * *
6 | 110 CF C.UN CEQ C.UEQ C.OLT C.ULT COLE C.ULE
CABS.FeV | CABSUN¢gV | CABSEQeV |[CABSUEQ<eV|CABS.OLT eV |CABS.ULT eV [CABS.OLE £V |CABS.ULE eV
7| 111 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
CABS.SFeV |CABS.NGLE £V| CABS.SEQ eV |CABS.NGL eV| CABS.LT eV |CABSNGEeV| CABSLEeV |CABSNGT eV
320 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables

Table A-15 M1 PS32 COP1 Encoding of Function Field When rs=D

function bits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1| 001 | ROUND.LV | TRUNC.LV CEIL.LV FLOOR.L V ROUND.W TRUNC.W CEIL.W FLOOR.W
2 | 010 * MOVCF § MOVZ MOVN * RECIPV RSQRT V *
3 [011 * * * * RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 CVT.S * * * CVT.W CVT.LV * *
5 101 * * * * * * * *
6 | 110 CF C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
CABSFeV | CABSUN¢eV | CABSEQeV |CABS.UEQeV|CABSOLT eV | CABS.ULT eV |CABS.OLE ¢V |CABSULE eV
7| 111 C.SF C.NGLE C.SEQ C.NGL CLT C.NGE C.LE C.NGT
CABS.SFeV [CABSNGLE eV| CABS.SEQeV |CABSNGL eV| CABSLT eV |CABSNGEeV| CABS.LEeV |CABSNGT eV
Table A-16 M1PS32 COP1 Encoding of Function Field When rs=W or Lt
function bits 2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 000 * * * * * * * *
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4 | 100 CVT.S CVT.D * * * * CVT.PSPW eV *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 [111 * * * * * * * *
1. Format typeL islegal only if 64-bit floating point operations are enabled.
Table A-17 M1PS64 COP1 Encoding of Function Field When rs=PS*
function bits 2.0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 ADD V SUBV MUL V * * ABSV MOV V NEGV
1| ool * * * * * * * *
2 | 010 * MOVCF &V Movz vV MOVN V * * * *
3| 011 ADDR eV * MULR eV * RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 | CVT.SPUV * * * CVT.PW.PSeV * * *
5101 | CVTSPLV * * * PLL.PSV PLU.PSV PUL.PSV PUU.PSV
6 | 110 CFV C.UNV CEQV C.UEQV C.OLTV C.ULTV C.OLEV C.ULEV
CABSFeV | CABSUN¢eV | CABSEQeV |[CABSUEQ&eV|CABSOLT eV | CABS.ULT eV [CABS.OLE eV |CABS.ULE eV
7| 1m1 CSFV C.NGLEV C.SEQV C.NGL V CLTV C.NGEV CLEV C.NGT V
CABS.SFeV |CABS.NGLEeV|CABS.SEQ eV |CABSINGL eV| CABSLT eV [CABSNGEeV| CABSLEeV |CABSNGT eV

1. Format type PSislegal only if 64-bit floating point operations are enabled.

Table A-18 M1 PS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF

tf bit 16
0 1
MOVEfmt | MOVT.fmt

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

321

Appendix A Instruction Bit Encodings

Table A-19 MIPS32 COP2 Encoding of rsField

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC2 6 B CFC26 MFHC2 6® MTC26 B CTC26 MTHC2 6
1 Ol BC2 e * * * * * * *
2] © 2 o5

Table A-20 M1PS64 COP1X Encoding of Function Field®

function bits 2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0| 000 [LWXC1V LDXC1V * * * LUXC1V * *
1 (001 | SWXC1V SDXC1V * * * SUXC1V * PREFX V
2 | 010 * * * * * * * *
3| 011 * * * * * * ALNV.PSV *
4| 100 | MADD.SV | MADD.DV * * * * MADD.PSV *
5] 101 | MSUB.SV | MSUB.DV * * * * MSUB.PSV *
6 | 110 [INMADD.SV|NMADD.D V * * * * NMADD.PS V| *
7 | 111 |NMSUB.SV |[NMSUB.D V * * * * NMSUB.PSV *

1. COPLX instructions are legal only if 64-bit floating point operations are enabled.

A.3 Floating Point Unit I nstruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. Thisinformation is atabular
presentation of the encodings described in tables Table A-13 and Table A-20 above.

Table A-21 Floating Point Unit I nstruction Format Encodings

fmt field fmt3 field
(bits 25..21 of (bits 2..0 of
COP1 opcode) COP1X opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width | Data Type
0.15 00..0F . . Used to encode Coprocessor 1 interface instructions (MFC1,
- " CTC1, etc.). Not used for format encoding.
" Floating
16 10 0 0 S Single 32 Point
Floating
17 11 1 1 D Double 64 Point
18..19 12..13 2.3 2.3 Reserved for future use by the architecture.
20 14 4 4 w Word 32 Fixed Point
21 15 5 5 L Long 64 Fixed Point
Paired Floating
22 16 6 6 PS Single 2x32 Point
23 17 7 7 Reserved for future use by the architecture.

322

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

A.3 Floating Point Unit Instruction Format Encodings

Table A-21 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of (bits 2..0 of
COP1 opcode) COP1X opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width | Data Type
Reserved for future use by the architecture. Not available for
24.31 18..1F — — fmt3 encoding.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

323

Appendix A Instruction Bit Encodings

324 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changesto figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision

Date

Description

0.90

November 1, 2000 Internal review copy of reorganized and updated architecture documentation.

0.91

November 15, 2000 External review copy of reorganized and updated architecture documentation.

0.92

Changesin thisrevision:

December 15, 2000

* Correct sign in description of MSUBU.

Update JR and JALR instructions to reflect the changes required by
MIPS16.

0.95

March 12, 2001 Update for second external review release.

1.00

Updated based on feedback from all reviews.

August 29, 2002 .

Add missing optional select field syntax in mtcO/mfc0 instruction
descriptions.

Correct the PREF instruction description to acknowledge that the
PrepareforStore function does, in fact, modify architectural state.

To provide additional flexibility for Coprocessor 2 implementations, extend
the sel field for DMFCO, DMTCO, MFCO, and MTCO to be 8 bits.

Update the PREF instruction to note that it may not update the state of a
locked cache line.

Remove obvioudly incorrect documentation in DIV and DIVU with regard
to putting smaller numbersin register rt.

Fix the description for MFC2 to reflect datamovement from the coprocessor
2 register to the GPR, rather than the other way around.

Correct the pseudo code for LDC1, LDC2, SDC1, and SDC2 for aMIPS32
implementation to show the required word swapping.

Indicate that the operation of the CACHE instruction is UNPREDICTABLE
if the cache line containing the instruction is the target of an invalidate or
writeback invalidate.

Indicate that an Index Load Tag or Index Store Tag operation of the CACHE
instruction must not cause a cache error exception.

Makethe entireright half of the MFC2, MTC2, CFC2, CTC2, DMFC2, and
DMTC2 instructions implementation dependent, thereby acknowledging

that these fields can be used in any way by a Coprocessor 2 implementation.

Clean up the definitions of LL, SC, LLD, and SCD.

Add awarning that software should not use non-zero values of the stype
field of the SYNC instruction.

Update the compatibility and subsetting rules to capture the current
requirements.

MIPS32® Architecture For Programmers Volume I, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

325

Appendix B Revision History

Revision Date Description

Merge the MIPS Architecture Release 2 changesin for the first release of a
Relesae 2 processor. Changes in this revision include:

» All new Release 2 instructions have been included: DI, EHB, El, EXT, INS,
JALR.HB, JR.HB, MFHC1, MFHC2, MTHC1, MTHC2, RDHWR,
RDPGPR, ROTR, ROTRV, SEB, SEH, SYNCI, WRPGPR, WSBH.

» Thefollowing instruction definitions changed to reflect Release 2 of the
Architecture: DERET, ERET, JAL, JALR, JR, SRL, SRLV
1.90 September 1, 2002

 With support for 64-bit FPUs on 32-bit CPUsin Release 2, all floating point
instructions that were previously implemented by M1PS64 processors have
been modified to reflect support on either MIPS32 or M1PS64 processorsin
Release 2.

* All pseudo-code functions have been udpated, and the
Areb4bitFPOperationsEnabled function was added.

» Update the instruction encoding tables for Release 2.

Continue with updatesto merge Rel ease 2 changesinto the document. Changes
in this revision include:

» Correct thetarget GPR (from rd to rt) in the SLTI and SLTIU instructions.
This appears to be a day-one bug.

* Correct CPR number, and missing data movement in the pseudocode for the
MTCO instruction.

* Add note to indicate that the CACHE instruction does not take Address
Error Exceptions due to mis-aligned effective addresses.

» Update SRL, ROTR, SRLV, ROTRV, DSRL, DROTR, DSRLYV, DROTRV,
DSRL 32, and DROTR32 instructions to reflect a 1-bit, rather than a 4-bit

2.00 June 9, 2003 decode of shift vs. rotate function.

» Add programming note to the PrepareForStore PREF hint to indicate that it
can not be used alone to create a bzero-like operation.

» Add note to the PREF and PREFX instruction indicating that they may
cause Bus Error and Cache Error exceptions, although thisistypically
limited to systems with high-reliability requirements.

» Update the SYNCI instruction to indicate that it should not modify the state
of alocked cacheline.

* Establish specific rules for when multiple TLB matches can be reported (on
writes only). This makes software handling easier.

326 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Revision Date Description
Changesin thisrevision:

* Correct figure label in LWR instruction (it was incorrectly specified as
LWL).

» Update dl filesto FrameMaker 7.1.

* Include support for implementation-dependent hardware registers via
RDHWR.

* Indicate that it isimplementation-dependent whether prefetch instructions
cause EJTAG data breakpoint exceptions on an address match, and suggest
that the preferred implementation is not to cause an exception.

* Correct the MIPS32 pseudocode for the LDC1, LDXC1, LUXC1, SDC1,
SDXC1, and SUXC1 instructions to reflect the Release 2 ability to have a
64-hit FPU on a 32-bit CPU. The correction simplfies the code by using the
ValueFPR and StoreFPR functions, which correctly implement the Release
2 access to the FPRs.

2.50 July 1, 2005

» Add an explicit recommendation that all cache operations that require an
index be done by converting the index to a ksegO address before performing
the cache operation.

» Expand on restrictions on the PREF instruction in cases where the effective
address has an uncached coherency attribute.

MIPS32® Architecture For Programmers Volume I, Revision 2.50 327

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

	MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS32® Instruction Set
	3.1 Compliance and Subsetting
	3.2 Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	ALNV.PS
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.PS.S
	CVT.S.fmt
	CVT.S.PL
	CVT.S.PU
	CVT.W.fmt
	DERET
	DI
	DIV
	DIV.fmt
	DIVU
	EHB
	EI
	ERET
	EXT
	FLOOR.L.fmt
	FLOOR.W.fmt
	INS
	J
	JAL
	JALR
	JALR.HB
	JR
	JR.HB
	LB
	LBU
	LDC1
	LDC2
	LDXC1
	LH
	LHU
	LL
	LUI
	LUXC1
	LW
	LWC1
	LWC2
	LWL
	LWR
	LWXC1
	MADD
	MADD.fmt
	MADDU
	MFC0
	MFC1
	MFC2
	MFHC1
	MFHC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUB.fmt
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHC1
	MTHC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NMADD.fmt
	NMSUB.fmt
	NOP
	NOR
	OR
	ORI
	PLL.PS
	PLU.PS
	PREF
	PREFX
	PUL.PS
	PUU.PS
	RDHWR
	RDPGPR
	RECIP.fmt
	ROTR
	ROTRV
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SC
	SDBBP
	SDC1
	SDC2
	SDXC1
	SEB
	SEH
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SUXC1
	SW
	SWC1
	SWC2
	SWL
	SWR
	SWXC1
	SYNC
	SYNCI
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	WRPGPR
	WSBH
	XOR
	XORI

	Instruction Bit Encodings
	A.1 Instruction Encodings and Instruction Classes
	A.2 Instruction Bit Encoding Tables
	A.3 Floating Point Unit Instruction Format Encodings

	Revision History

