
Document Number: MD00086
Revision 2.50
July 1, 2005

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers
Volume II: The MIPS32® Instruction Set



Copyright © 2001-2003,2005 MIPS Technologies, Inc.  All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies").  Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies
or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright
laws.  Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions.  UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information.  Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded.  Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items.  If the user of this information, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CoreLV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Template: B1.14, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS32



MIPS32® Architecture For Programmers Volume II, Revision 2.50 i

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 About This Book ................................................................................................................................................. 1
1.1 Typographical Conventions ................................................................................................................................... 1

1.1.1 Italic Text ..................................................................................................................................................... 1
1.1.2 Bold Text ..................................................................................................................................................... 1
1.1.3 Courier Text ................................................................................................................................................. 1

1.2 UNPREDICTABLE and UNDEFINED ................................................................................................................ 2
1.2.1 UNPREDICTABLE ..................................................................................................................................... 2
1.2.2 UNDEFINED ............................................................................................................................................... 2
1.2.3 UNSTABLE ................................................................................................................................................. 2

1.3 Special Symbols in Pseudocode Notation .............................................................................................................. 3
1.4 For More Information ............................................................................................................................................ 5

Chapter 2 Guide to the Instruction Set ................................................................................................................................. 7
2.1 Understanding the Instruction Fields ..................................................................................................................... 7

2.1.1 Instruction Fields ......................................................................................................................................... 8
2.1.2 Instruction Descriptive Name and Mnemonic ............................................................................................. 9
2.1.3 Format Field ................................................................................................................................................. 9
2.1.4 Purpose Field ............................................................................................................................................. 10
2.1.5 Description Field ........................................................................................................................................ 10
2.1.6 Restrictions Field ....................................................................................................................................... 10
2.1.7 Operation Field .......................................................................................................................................... 11
2.1.8 Exceptions Field ......................................................................................................................................... 11
2.1.9 Programming Notes and Implementation Notes Fields ............................................................................. 11

2.2 Operation Section Notation and Functions .......................................................................................................... 12
2.2.1 Instruction Execution Ordering .................................................................................................................. 12
2.2.2 Pseudocode Functions ................................................................................................................................ 12

2.3 Op and Function Subfield Notation ..................................................................................................................... 22
2.4 FPU Instructions .................................................................................................................................................. 22

Chapter 3 The MIPS32® Instruction Set ........................................................................................................................... 23
3.1 Compliance and Subsetting .................................................................................................................................. 23
3.2 Alphabetical List of Instructions .......................................................................................................................... 24
ABS.fmt ....................................................................................................................................................................... 33
ADD ............................................................................................................................................................................. 34
ADD.fmt ...................................................................................................................................................................... 35
ADDI............................................................................................................................................................................ 36
ADDIU......................................................................................................................................................................... 37
ADDU .......................................................................................................................................................................... 38
ALNV.PS ..................................................................................................................................................................... 39
AND ............................................................................................................................................................................. 42
ANDI............................................................................................................................................................................ 43
B ................................................................................................................................................................................... 44
BAL.............................................................................................................................................................................. 45
BC1F ............................................................................................................................................................................ 46
BC1FL.......................................................................................................................................................................... 48
BC1T............................................................................................................................................................................ 50
BC1TL ......................................................................................................................................................................... 52
BC2F ............................................................................................................................................................................ 54
BC2FL.......................................................................................................................................................................... 55
BC2T............................................................................................................................................................................ 57
BC2TL ......................................................................................................................................................................... 58



ii MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BEQ.............................................................................................................................................................................. 60
BEQL ........................................................................................................................................................................... 61
BGEZ ........................................................................................................................................................................... 63
BGEZAL...................................................................................................................................................................... 64
BGEZALL ................................................................................................................................................................... 65
BGEZL......................................................................................................................................................................... 67
BGTZ ........................................................................................................................................................................... 69
BGTZL......................................................................................................................................................................... 70
BLEZ............................................................................................................................................................................ 72
BLEZL ......................................................................................................................................................................... 73
BLTZ............................................................................................................................................................................ 75
BLTZAL ...................................................................................................................................................................... 76
BLTZALL.................................................................................................................................................................... 77
BLTZL ......................................................................................................................................................................... 79
BNE.............................................................................................................................................................................. 81
BNEL ........................................................................................................................................................................... 82
BREAK ........................................................................................................................................................................ 84
C.cond.fmt.................................................................................................................................................................... 85
CACHE ........................................................................................................................................................................ 90
CEIL.L.fmt................................................................................................................................................................... 97
CEIL.W.fmt ................................................................................................................................................................. 99
CFC1 .......................................................................................................................................................................... 100
CFC2 .......................................................................................................................................................................... 102
CLO............................................................................................................................................................................ 103
CLZ ............................................................................................................................................................................ 104
COP2.......................................................................................................................................................................... 105
CTC1.......................................................................................................................................................................... 106
CTC2.......................................................................................................................................................................... 108
CVT.D.fmt ................................................................................................................................................................. 109
CVT.L.fmt.................................................................................................................................................................. 110
CVT.PS.S ................................................................................................................................................................... 112
CVT.S.fmt .................................................................................................................................................................. 114
CVT.S.PL................................................................................................................................................................... 115
CVT.S.PU .................................................................................................................................................................. 116
CVT.W.fmt ................................................................................................................................................................ 117
DERET....................................................................................................................................................................... 118
DI ............................................................................................................................................................................... 120
DIV............................................................................................................................................................................. 122
DIV.fmt ...................................................................................................................................................................... 124
DIVU.......................................................................................................................................................................... 125
EHB............................................................................................................................................................................ 126
EI ................................................................................................................................................................................ 127
ERET.......................................................................................................................................................................... 129
EXT............................................................................................................................................................................ 131
FLOOR.L.fmt............................................................................................................................................................. 133
FLOOR.W.fmt ........................................................................................................................................................... 135
INS ............................................................................................................................................................................. 136
J .................................................................................................................................................................................. 138
JAL............................................................................................................................................................................. 139
JALR .......................................................................................................................................................................... 140
JALR.HB.................................................................................................................................................................... 142
JR ............................................................................................................................................................................... 145
JR.HB......................................................................................................................................................................... 147
LB............................................................................................................................................................................... 150
LBU............................................................................................................................................................................ 151



MIPS32® Architecture For Programmers Volume II, Revision 2.50 iii

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LDC1.......................................................................................................................................................................... 152
LDC2.......................................................................................................................................................................... 153
LDXC1....................................................................................................................................................................... 154
LH .............................................................................................................................................................................. 155
LHU ........................................................................................................................................................................... 156
LL............................................................................................................................................................................... 157
LUI ............................................................................................................................................................................. 159
LUXC1....................................................................................................................................................................... 160
LW ............................................................................................................................................................................. 161
LWC1......................................................................................................................................................................... 162
LWC2......................................................................................................................................................................... 163
LWL ........................................................................................................................................................................... 164
LWR........................................................................................................................................................................... 167
LWXC1...................................................................................................................................................................... 171
MADD ....................................................................................................................................................................... 172
MADD.fmt ................................................................................................................................................................. 173
MADDU..................................................................................................................................................................... 175
MFC0 ......................................................................................................................................................................... 176
MFC1 ......................................................................................................................................................................... 177
MFC2 ......................................................................................................................................................................... 178
MFHC1 ...................................................................................................................................................................... 179
MFHC2 ...................................................................................................................................................................... 180
MFHI.......................................................................................................................................................................... 181
MFLO......................................................................................................................................................................... 182
MOV.fmt.................................................................................................................................................................... 183
MOVF ........................................................................................................................................................................ 184
MOVF.fmt.................................................................................................................................................................. 185
MOVN ....................................................................................................................................................................... 187
MOVN.fmt ................................................................................................................................................................. 188
MOVT........................................................................................................................................................................ 190
MOVT.fmt ................................................................................................................................................................. 191
MOVZ........................................................................................................................................................................ 193
MOVZ.fmt ................................................................................................................................................................. 194
MSUB ........................................................................................................................................................................ 196
MSUB.fmt.................................................................................................................................................................. 197
MSUBU ..................................................................................................................................................................... 199
MTC0 ......................................................................................................................................................................... 200
MTC1 ......................................................................................................................................................................... 201
MTC2 ......................................................................................................................................................................... 202
MTHC1 ...................................................................................................................................................................... 203
MTHC2 ...................................................................................................................................................................... 204
MTHI ......................................................................................................................................................................... 205
MTLO ........................................................................................................................................................................ 206
MUL........................................................................................................................................................................... 207
MUL.fmt .................................................................................................................................................................... 208
MULT ........................................................................................................................................................................ 209
MULTU ..................................................................................................................................................................... 210
NEG.fmt ..................................................................................................................................................................... 211
NMADD.fmt .............................................................................................................................................................. 212
NMSUB.fmt ............................................................................................................................................................... 214
NOP............................................................................................................................................................................ 216
NOR ........................................................................................................................................................................... 217
OR .............................................................................................................................................................................. 218
ORI............................................................................................................................................................................. 219
PLL.PS ....................................................................................................................................................................... 220



iv MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PLU.PS....................................................................................................................................................................... 221
PREF .......................................................................................................................................................................... 222
PREFX ....................................................................................................................................................................... 226
PUL.PS....................................................................................................................................................................... 227
PUU.PS ...................................................................................................................................................................... 228
RDHWR..................................................................................................................................................................... 229
RDPGPR .................................................................................................................................................................... 231
RECIP.fmt.................................................................................................................................................................. 232
ROTR ......................................................................................................................................................................... 234
ROTRV ...................................................................................................................................................................... 235
ROUND.L.fmt ........................................................................................................................................................... 236
ROUND.W.fmt .......................................................................................................................................................... 238
RSQRT.fmt ................................................................................................................................................................ 240
SB............................................................................................................................................................................... 242
SC............................................................................................................................................................................... 243
SDBBP ....................................................................................................................................................................... 246
SDC1.......................................................................................................................................................................... 247
SDC2.......................................................................................................................................................................... 248
SDXC1 ....................................................................................................................................................................... 249
SEB ............................................................................................................................................................................ 250
SEH ............................................................................................................................................................................ 251
SH............................................................................................................................................................................... 253
SLL............................................................................................................................................................................. 254
SLLV.......................................................................................................................................................................... 255
SLT............................................................................................................................................................................. 256
SLTI ........................................................................................................................................................................... 257
SLTIU ........................................................................................................................................................................ 258
SLTU.......................................................................................................................................................................... 259
SQRT.fmt ................................................................................................................................................................... 260
SRA............................................................................................................................................................................ 261
SRAV ......................................................................................................................................................................... 262
SRL ............................................................................................................................................................................ 263
SRLV ......................................................................................................................................................................... 264
SSNOP ....................................................................................................................................................................... 265
SUB............................................................................................................................................................................ 266
SUB.fmt ..................................................................................................................................................................... 267
SUBU ......................................................................................................................................................................... 268
SUXC1 ....................................................................................................................................................................... 269
SW.............................................................................................................................................................................. 270
SWC1 ......................................................................................................................................................................... 271
SWC2 ......................................................................................................................................................................... 272
SWL ........................................................................................................................................................................... 273
SWR ........................................................................................................................................................................... 275
SWXC1 ...................................................................................................................................................................... 277
SYNC ......................................................................................................................................................................... 278
SYNCI........................................................................................................................................................................ 282
SYSCALL.................................................................................................................................................................. 285
TEQ............................................................................................................................................................................ 286
TEQI........................................................................................................................................................................... 287
TGE............................................................................................................................................................................ 288
TGEI........................................................................................................................................................................... 289
TGEIU........................................................................................................................................................................ 290
TGEU ......................................................................................................................................................................... 291
TLBP.......................................................................................................................................................................... 292
TLBR ......................................................................................................................................................................... 293



MIPS32® Architecture For Programmers Volume II, Revision 2.50 v

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLBWI ....................................................................................................................................................................... 295
TLBWR...................................................................................................................................................................... 297
TLT ............................................................................................................................................................................ 299
TLTI ........................................................................................................................................................................... 300
TLTIU ........................................................................................................................................................................ 301
TLTU ......................................................................................................................................................................... 302
TNE............................................................................................................................................................................ 303
TNEI........................................................................................................................................................................... 304
TRUNC.L.fmt ............................................................................................................................................................ 305
TRUNC.W.fmt........................................................................................................................................................... 307
WAIT ......................................................................................................................................................................... 309
WRPGPR ................................................................................................................................................................... 311
WSBH ........................................................................................................................................................................ 312
XOR ........................................................................................................................................................................... 313
XORI.......................................................................................................................................................................... 314

Appendix A Instruction Bit Encodings ............................................................................................................................ 315
A.1 Instruction Encodings and Instruction Classes .................................................................................................. 315
A.2 Instruction Bit Encoding Tables ......................................................................................................................... 315
A.3 Floating Point Unit Instruction Format Encodings ............................................................................................ 322

Appendix B Revision History .......................................................................................................................................... 325



vi MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2-1: Example of Instruction Description.................................................................................................................. 8
Figure 2-2: Example of Instruction Fields........................................................................................................................... 9
Figure 2-3: Example of Instruction Descriptive Name and Mnemonic .............................................................................. 9
Figure 2-4: Example of Instruction Format......................................................................................................................... 9
Figure 2-5: Example of Instruction Purpose ..................................................................................................................... 10
Figure 2-6: Example of Instruction Description................................................................................................................ 10
Figure 2-7: Example of Instruction Restrictions ............................................................................................................... 11
Figure 2-8: Example of Instruction Operation .................................................................................................................. 11
Figure 2-9: Example of Instruction Exception .................................................................................................................. 11
Figure 2-10: Example of Instruction Programming Notes ................................................................................................ 12
Figure 2-11: COP_LW Pseudocode Function ................................................................................................................... 13
Figure 2-12: COP_LD Pseudocode Function.................................................................................................................... 13
Figure 2-13: COP_SW Pseudocode Function ................................................................................................................... 13
Figure 2-14: COP_SD Pseudocode Function .................................................................................................................... 14
Figure 2-15: CoprocessorOperation Pseudocode Function ............................................................................................... 14
Figure 2-16: AddressTranslation Pseudocode Function.................................................................................................... 15
Figure 2-17: LoadMemory Pseudocode Function ............................................................................................................. 15
Figure 2-18: StoreMemory Pseudocode Function............................................................................................................. 16
Figure 2-19: Prefetch Pseudocode Function...................................................................................................................... 16
Figure 2-20: SyncOperation Pseudocode Function ........................................................................................................... 17
Figure 2-21: ValueFPR Pseudocode Function .................................................................................................................. 18
Figure 2-22: StoreFPR Pseudocode Function ................................................................................................................... 19
Figure 2-23: CheckFPException Pseudocode Function .................................................................................................... 20
Figure 2-24: FPConditionCode Pseudocode Function ...................................................................................................... 20
Figure 2-25: SetFPConditionCode Pseudocode Function................................................................................................. 20
Figure 2-26: SignalException Pseudocode Function ........................................................................................................ 21
Figure 2-27: SignalDebugBreakpointException Pseudocode Function ............................................................................ 21
Figure 2-28: SignalDebugModeBreakpointException Pseudocode Function................................................................... 21
Figure 2-29: NullifyCurrentInstruction PseudoCode Function ......................................................................................... 21
Figure 2-30: JumpDelaySlot Pseudocode Function .......................................................................................................... 22
Figure 2-31: PolyMult Pseudocode Function.................................................................................................................... 22
Figure 3-1: Example of an ALNV.PS Operation .............................................................................................................. 39
Figure 3-2: Usage of Address Fields to Select Index and Way......................................................................................... 91
Figure 3-3: Operation of the EXT Instruction ................................................................................................................. 131
Figure 3-4: Operation of the INS Instruction .................................................................................................................. 136
Figure 3-5: Unaligned Word Load Using LWL and LWR ............................................................................................. 164
Figure 3-6: Bytes Loaded by LWL Instruction ............................................................................................................... 165
Figure 3-7: Unaligned Word Load Using LWL and LWR ............................................................................................. 168
Figure 3-8: Bytes Loaded by LWR Instruction ............................................................................................................... 169
Figure 3-9: Unaligned Word Store Using SWL and SWR.............................................................................................. 273
Figure 3-10: Bytes Stored by an SWL Instruction .......................................................................................................... 274
Figure 3-11: Unaligned Word Store Using SWR and SWL............................................................................................ 275
Figure 3-12: Bytes Stored by SWR Instruction............................................................................................................... 276
Figure A-1: Sample Bit Encoding Table ......................................................................................................................... 316



MIPS32® Architecture For Programmers Volume II, Revision 2.50 vii

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements .......................................................................................... 3
Table 2-1: AccessLength Specifications for Loads/Stores................................................................................................ 16
Table 3-1: CPU Arithmetic Instructions............................................................................................................................ 24
Table 3-2: CPU Branch and Jump Instructions ................................................................................................................. 24
Table 3-3: CPU Instruction Control Instructions .............................................................................................................. 25
Table 3-4: CPU Load, Store, and Memory Control Instructions ...................................................................................... 25
Table 3-5: CPU Logical Instructions................................................................................................................................. 26
Table 3-6: CPU Insert/Extract Instructions ....................................................................................................................... 26
Table 3-7: CPU Move Instructions.................................................................................................................................... 26
Table 3-8: CPU Shift Instructions ..................................................................................................................................... 27
Table 3-9: CPU Trap Instructions ..................................................................................................................................... 27
Table 3-10: Obsolete CPU Branch Instructions ................................................................................................................ 28
Table 3-11: FPU Arithmetic Instructions .......................................................................................................................... 28
Table 3-12: FPU Branch Instructions................................................................................................................................ 28
Table 3-13: FPU Compare Instructions............................................................................................................................. 29
Table 3-14: FPU Convert Instructions .............................................................................................................................. 29
Table 3-15: FPU Load, Store, and Memory Control Instructions ..................................................................................... 29
Table 3-16: FPU Move Instructions .................................................................................................................................. 30
Table 3-17: Obsolete FPU Branch Instructions................................................................................................................. 30
Table 3-18: Coprocessor Branch Instructions ................................................................................................................... 30
Table 3-19: Coprocessor Execute Instructions.................................................................................................................. 31
Table 3-20: Coprocessor Load and Store Instructions ...................................................................................................... 31
Table 3-21: Coprocessor Move Instructions ..................................................................................................................... 31
Table 3-22: Obsolete Coprocessor Branch Instructions .................................................................................................... 31
Table 3-23: Privileged Instructions ................................................................................................................................... 31
Table 3-24: EJTAG Instructions ....................................................................................................................................... 32
Table 3-25: FPU Comparisons Without Special Operand Exceptions.............................................................................. 86
Table 3-26: FPU Comparisons With Special Operand Exceptions for QNaNs ................................................................ 87
Table 3-27: Usage of Effective Address ........................................................................................................................... 90
Table 3-28: Encoding of Bits[17:16] of CACHE Instruction ........................................................................................... 91
Table 3-29: Encoding of Bits [20:18] of the CACHE Instruction..................................................................................... 92
Table 3-30: Values of the hint Field for the PREF Instruction ....................................................................................... 223
Table 3-31: Hardware Register List ................................................................................................................................ 229
Table A-1: Symbols Used in the Instruction Encoding Tables ........................................................................................316
Table A-2: MIPS32 Encoding of the Opcode Field .........................................................................................................317
Table A-3: MIPS32 SPECIAL Opcode Encoding of Function Field...............................................................................318
Table A-4: MIPS32 REGIMM Encoding of rt Field........................................................................................................318
Table A-5: MIPS32 SPECIAL2 Encoding of Function Field ..........................................................................................318
Table A-6: MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture.....................................318
Table A-7: MIPS32 MOVCI Encoding of tf Bit ..............................................................................................................319
Table A-8: MIPS32 SRL Encoding of Shift/Rotate .........................................................................................................319
Table A-9: MIPS32 SRLV Encoding of Shift/Rotate ......................................................................................................319
Table A-10: MIPS32 BSHFL Encoding of sa Field.........................................................................................................319
Table A-11: MIPS32 COP0 Encoding of rs Field............................................................................................................319
Table A-12: MIPS32 COP0 Encoding of Function Field When rs=CO ..........................................................................320
Table A-13: MIPS32 COP1 Encoding of rs Field............................................................................................................320
Table A-14: MIPS32 COP1 Encoding of Function Field When rs=S..............................................................................320
Table A-15: MIPS32 COP1 Encoding of Function Field When rs=D.............................................................................321
Table A-16: MIPS32 COP1 Encoding of Function Field When rs=W or L ....................................................................321
Table A-17: MIPS64 COP1 Encoding of Function Field When rs=PS ...........................................................................321



viii MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table A-18: MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF ............................................321
Table A-19: MIPS32 COP2 Encoding of rs Field............................................................................................................322
Table A-20: MIPS64 COP1X Encoding of Function Field..............................................................................................322
Table A-21: Floating Point Unit Instruction Format Encodings ......................................................................................322



MIPS32® Architecture For Programmers Volume II, Revision 2.50 1

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS32® Architecture For Programmers Volume II comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS32®
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume III describes the MIPS32® Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS32® document set

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS32® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D, and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through 1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.



2 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated,
it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a legal
transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode



1.3 Special Symbols in Pseudocode Notation

MIPS32® Architecture For Programmers Volume II, Revision 2.50 3

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol  Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n
A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z
Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture, GPR[x]
is a short-hand notation for SGPR[ SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x



4 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.

BigEndianCPU
The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only, and
is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRRE and
User mode).

LLbit
Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is set
when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation, when
a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a time
label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labeled
with the instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled I+1.

The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same time”
as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruction)
or 4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction
time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 32-bit address all of which are significant during a memory reference.

ISA Mode

In processors that implement the MIPS16e Application Specific Extension, the ISA Mode is a single-bit register
that determines in which mode the processor is executing, as follows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol  Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e instructions



1.4 For More Information

MIPS32® Architecture For Programmers Volume II, Revision 2.50 5

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS URL:

http://www.mips.com

Comments or questions on the MIPS32® Architecture or this document should be directed to

MIPS Architecture Group
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32-bit
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function - the
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol  Meaning



6 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book



MIPS32® Architecture For Programmers Volume II, Revision 2.50 7

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 8

• “Instruction Descriptive Name and Mnemonic” on page 9

• “Format Field” on page 9

• “Purpose Field” on page 10

• “Description Field” on page 10

• “Restrictions Field” on page 10

• “Operation Field” on page 11

• “Exceptions Field” on page 11

• “Programming Notes and Implementation Notes Fields” on page 11



8 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

 0

Example Instruction Name EXAMPLE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPLE op

Description: GPR[rd] ← GPR[r]s exampleop GPR[rt]
This section describes the operation of the instruction in text, tables, and
illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/

temp ← GPR[rs] exampleop GPR[rt]
GPR[rd]← temp

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation of
the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors

Instruction Mnemonic
and Descriptive Name

Instruction encoding
constant and variable
field names and values

Architecture level at
which instruction was
defined/redefined and
assembler format(s) for
each definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and
operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors



2.1 Understanding the Instruction Fields

MIPS32® Architecture For Programmers Volume II, Revision 2.50 9

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2-2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt and rd in Figure 2-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2-2). If
such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2-3.

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: ADD rd, rs, rt MIPS32

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD



10 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

• If the addition does not overflow, the 32-bit result is placed into GPR rd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register fd”
is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /Status
register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into one
of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)



2.1 Understanding the Instruction Fields

MIPS32® Architecture For Programmers Volume II, Revision 2.50 11

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements the Description section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2, "Operation Section Notation and Functions" on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.9 Programming Notes and Implementation Notes Fields



12 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 12

• “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

• “Coprocessor General Register Access Functions” on page 12

• “Memory Operation Functions” on page 14

• “Floating Point Functions” on page 17

• “Miscellaneous Functions” on page 20

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and how
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.



2.2 Operation Section Notation and Functions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 13

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a load
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in
coprocessor general register rt.

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory during
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general register rt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble:  64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

Figure 2-13 COP_SW Pseudocode Function



14 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-15 CoprocessorOperation Pseudocode Function

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2-1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly from
the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address
is in one of the unmapped address spaces, the physical address and CCA are determined directly by the virtual address.
If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines the



2.2 Operation Section Notation and Functions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 15

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

physical address and access type; if the required translation is not present in the TLB or the desired access is not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-16 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory access type
of the reference is uncached, only the referenced bytes are read from memory and marked as valid within the memory
element. If the access type is cached but the data is not present in cache, an implementation-specific size and alignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the entire
memory element.

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-17 LoadMemory Pseudocode Function

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main memory)
as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are



16 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLength field indicate
which of the bytes within the MemElem data should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Figure 2-18 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-19 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)



2.2 Operation Section Notation and Functions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 17

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-20 SyncOperation Pseudocode Function

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are
interpreted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from
a load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).



18 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr+1]31..0 || FPR[fpr]31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE
else

valueFPR ← FPR[fpr]
endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-21 ValueFPR Pseudocode Function

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.



2.2 Operation Section Notation and Functions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 19

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

StoreFPR

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value31..0
FPR[fpr+1] ← UNPREDICTABLE32 || value63..32

endif
else

FPR[fpr] ← value
endif

L, PS:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

endfunction StoreFPR

Figure 2-22 StoreFPR Pseudocode Function

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.



20 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

CheckFPException

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ( (FCSR17 = 1) or
((FCSR16..12 and FCSR11..7) ≠ 0)) ) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

Figure 2-23 CheckFPException Pseudocode Function

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

Figure 2-24 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode(cc)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

Figure 2-25 SetFPConditionCode Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.



2.2 Operation Section Notation and Functions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 21

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-26 SignalException Pseudocode Function

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-Debug
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

Figure 2-27 SignalDebugBreakpointException Pseudocode Function

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

Figure 2-28 SignalDebugModeBreakpointException Pseudocode Function

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

Figure 2-29 NullifyCurrentInstruction PseudoCode Function



22 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immediately
follows a JR, JAL, JALR, or JALX instruction.

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

Figure 2-30 JumpDelaySlot Pseudocode Function

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

PolyMult(x, y)
temp ← 0
for i in 0 .. 31

if xi = 1 then
temp ← temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult ← temp

endfunction PolyMult

Figure 2-31 PolyMult Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 22 for a description of the op and function subfields.



MIPS32® Architecture For Programmers Volume II, Revision 2.50 23

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

The MIPS32® Instruction Set

3.1 Compliance and Subsetting

To be compliant with the MIPS32 Architecture, designs must implement a set of required features, as described in this
document set. To allow flexibility in implementations, the MIPS32 Architecture does provide subsetting rules. An
implementation that follows these rules is compliant with the MIPS32 Architecture as long as it adheres strictly to the
rules, and fully implements the remaining instructions.Supersetting of the MIPS32 Architecture is only allowed by
adding functions to the SPECIAL2 major opcode, by adding control for co-processors via the COP2, LWC2, SWC2,
LDC2, and/or SDC2, and/or COP3 opcodes, or via the addition of approved Application Specific Extensions. Note,
however, that a decision to use the COP3 opcode in an implementation of the MIPS32 Architecture precludes a
compatible upgrade to the MIPS64 Architecture because the COP3 opcode is used as part of the floating point ISA in
the MIPS64 Architecture.

The instruction set subsetting rules are as follows:

• All CPU instructions must be implemented - no subsetting is allowed.

• The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determine if an FPU is implemented by checking the state of the FP bit in the Config1 CP0 register. If
the FPU is implemented, it must include S, D, and W formats, operate instructions, and all supporting instructions.
Software may determine which FPU data types are implemented by checking the appropriate bit in the FIR CP1
register. The following allowable FPU subsets are compliant with the MIPS32 architecture:

– No FPU

– FPU with S, D, and W formats and all supporting instructions

• Coprocessor 2 is optional and may be omitted.  Software may determine if Coprocessor 2 is implemented by
checking the state of the C2 bit in the Config1 CP0 register. If Coprocessor 2 is implemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be omitted
on an instruction-by-instruction basis.

• Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of the Status register must be ignored on
write and read as zero.

• The standard TLB-based memory management unit may be replaced with a simpler MMU (e.g., a Fixed Mapping
MMU). If this is done, the rest of the interface to the Privileged Resource Architecture must be preserved. If a
TLB-based memory management unit is implemented, it must be the standard TLB-based MMU as described in the
Privileged Resource Architecture chapter. Software may determine the type of the MMU by checking the MT field in
the Config CP0 register.

• The Privileged Resource Architecture includes several implementation options and may be subsetted in accordance
with those options.

• Instruction, CP0 Register, and CP1 Control Register fields that are marked “Reserved” or shown as “0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

• Supported ASEs are optional and may be subsetted out. If most cases, software may determine if a supported ASE is
implemented by checking the appropriate bit in the Config1 or Config3 CP0 register. If they are implemented, they
must implement the entire ISA applicable to the component, or implement subsets that are approved by the ASE
specifications.

• EJTAG is optional and may be subsetted out. If it is implemented, it must implement only those subsets that are
approved by the EJTAG specification.



24 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32® Instruction Set

• If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

3.2 Alphabetical List of Instructions

Table 3-1 through Table 3-24 provide a list of instructions grouped by category. Individual instruction descriptions
follow the tables, arranged in alphabetical order.

Table 3-1 CPU Arithmetic Instructions

Mnemonic Instruction

ADD Add Word

ADDI Add Immediate Word

ADDIU Add Immediate Unsigned Word

ADDU Add Unsigned Word

CLO Count Leading Ones in Word

CLZ Count Leading Zeros in Word

DIV Divide Word

DIVU Divide Unsigned Word

MADD Multiply and Add Word to Hi, Lo

MADDU Multiply and Add Unsigned Word to Hi, Lo

MSUB Multiply and Subtract Word to Hi, Lo

MSUBU Multiply and Subtract Unsigned Word to Hi, Lo

MUL Multiply Word to GPR

MULT Multiply Word

MULTU Multiply Unsigned Word

SEB Sign-Extend Byte Release 2 Only

SEH Sign-Extend Halftword Release 2 Only

SLT Set on Less Than

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned

SLTU Set on Less Than Unsigned

SUB Subtract Word

SUBU Subtract Unsigned Word

Table 3-2 CPU Branch and Jump Instructions

Mnemonic Instruction

B Unconditional Branch



3.2 Alphabetical List of Instructions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 25

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BAL Branch and Link

BEQ Branch on Equal

BGEZ Branch on Greater Than or Equal to Zero

BGEZAL Branch on Greater Than or Equal to Zero and Link

BGTZ Branch on Greater Than Zero

BLEZ Branch on Less Than or Equal to Zero

BLTZ Branch on Less Than Zero

BLTZAL Branch on Less Than Zero and Link

BNE Branch on Not Equal

J Jump

JAL Jump and Link

JALR Jump and Link Register

JALR.HB Jump and Link Register with Hazard Barrier Release 2 Only

JR Jump Register

JR.HB Jump Register with Hazard Barrier Release 2 Only

Table 3-3 CPU Instruction Control Instructions

Mnemonic Instruction

EHB Execution Hazard Barrier Release 2 Only

NOP No Operation

SSNOP Superscalar No Operation

Table 3-4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

LL Load Linked Word

LW Load Word

LWL Load Word Left

LWR Load Word Right

PREF Prefetch

Table 3-2 CPU Branch and Jump Instructions

Mnemonic Instruction



26 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32® Instruction Set

SB Store Byte

SC Store Conditional Word

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

SYNC Synchronize Shared Memory

SYNCI Synchronize Caches to Make Instruction Writes Effective Release 2 Only

Table 3-5 CPU Logical Instructions

Mnemonic Instruction

AND And

ANDI And Immediate

LUI Load Upper Immediate

NOR Not Or

OR Or

ORI Or Immediate

XOR Exclusive Or

XORI Exclusive Or Immediate

Table 3-6 CPU Insert/Extract Instructions

Mnemonic Instruction

EXT Extract Bit Field Release 2 Only

INS Insert Bit Field Release 2 Only

WSBH Word Swap Bytes Within Halfwords Release 2 Only

Table 3-7 CPU Move Instructions

Mnemonic Instruction

MFHI Move From HI Register

MFLO Move From LO Register

MOVF Move Conditional on Floating Point False

MOVN Move Conditional on Not Zero

Table 3-4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction



3.2 Alphabetical List of Instructions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 27

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVT Move Conditional on Floating Point True

MOVZ Move Conditional on Zero

MTHI Move To HI Register

MTLO Move To LO Register

RDHWR Read Hardware Register Release 2 Only

Table 3-8 CPU Shift Instructions

Mnemonic Instruction

ROTR Rotate Word Right Release 2 Only

ROTRV Rotate Word Right Variable Release 2 Only

SLL Shift Word Left Logical

SLLV Shift Word Left Logical Variable

SRA Shift Word Right Arithmetic

SRAV Shift Word Right Arithmetic Variable

SRL Shift Word Right Logical

SRLV Shift Word Right Logical Variable

Table 3-9 CPU Trap Instructions

Mnemonic Instruction

BREAK Breakpoint

SYSCALL System Call

TEQ Trap if Equal

TEQI Trap if Equal Immediate

TGE Trap if Greater or Equal

TGEI Trap if Greater of Equal Immediate

TGEIU Trap if Greater or Equal Immediate Unsigned

TGEU Trap if Greater or Equal Unsigned

TLT Trap if Less Than

TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned

TLTU Trap if Less Than Unsigned

TNE Trap if Not Equal

TNEI Trap if Not Equal Immediate

Table 3-7 CPU Move Instructions

Mnemonic Instruction



28 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32® Instruction Set

Table 3-10 Obsolete1 CPU Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.

Mnemonic Instruction

BEQL Branch on Equal Likely

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

BGEZL Branch on Greater Than or Equal to Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLEZL Branch on Less Than or Equal to Zero Likely

BLTZALL Branch on Less Than Zero and Link Likely

BLTZL Branch on Less Than Zero Likely

BNEL Branch on Not Equal Likely

Table 3-11 FPU Arithmetic Instructions

Mnemonic Instruction

ABS.fmt Floating Point Absolute Value

ADD.fmt Floating Point Add

DIV.fmt Floating Point Divide

MADD.fmt Floating Point Multiply Add

MSUB.fmt Floating Point Multiply Subtract

MUL.fmt Floating Point Multiply

NEG.fmt Floating Point Negate

NMADD.fmt Floating Point Negative Multiply Add

NMSUB.fmt Floating Point Negative Multiply Subtract

RECIP.fmt Reciprocal Approximation

RSQRT.fmt Reciprocal Square Root Approximation

SQRT.fmt Floating Point Square Root

SUB.fmt Floating Point Subtract

Table 3-12 FPU Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True



3.2 Alphabetical List of Instructions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 29

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-13 FPU Compare Instructions

Mnemonic Instruction

C.cond.fmt Floating Point Compare

Table 3-14 FPU Convert Instructions

Mnemonic Instruction

ALNV.PS Floating Point Align Variable 64-bit FPU Only

CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point 64-bit FPU Only

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

CVT.D.fmt Floating Point Convert to Double Floating Point

CVT.L.fmt Floating Point Convert to Long Fixed Point 64-bit FPU Only

CVT.PS.S Floating Point Convert Pair to Paired Single 64-bit FPU Only

CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point 64-bit FPU Only

CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point 64-bit FPU Only

CVT.S.fmt Floating Point Convert to Single Floating Point

CVT.W.fmt Floating Point Convert to Word Fixed Point

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point 64-bit FPU Only

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

PLL.PS Pair Lower Lower 64-bit FPU Only

PLU.PS Pair Lower Upper 64-bit FPU Only

PUL.PS Pair Upper Lower 64-bit FPU Only

PUU.PS Pair Upper Upper 64-bit FPU Only

ROUND.L.fmt Floating Point Round to Long Fixed Point 64-bit FPU Only

ROUND.W.fmt Floating Point Round to Word Fixed Point

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point 64-bit FPU Only

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

Table 3-15 FPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LDXC1 Load Doubleword Indexed to Floating Point 64-bit FPU Only

LUXC1 Load Doubleword Indexed Unaligned to Floating Point 64-bit FPU Only

LWC1 Load Word to Floating Point



30 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32® Instruction Set

LWXC1 Load Word Indexed to Floating Point 64-bit FPU Only

PREFX Prefetch Indexed

SDC1 Store Doubleword from Floating Point

SDXC1 Store Doubleword Indexed from Floating Point 64-bit FPU Only

SUXC1 Store Doubleword Indexed Unaligned from Floating Point 64-bit FPU Only

SWC1 Store Word from Floating Point

SWXC1 Store Word Indexed from Floating Point 64-bit FPU Only

Table 3-16 FPU Move Instructions

Mnemonic Instruction

CFC1 Move Control Word from Floating Point

CTC1 Move Control Word to Floating Point

MFC1 Move Word from Floating Point

MFHC1 Move Word from High Half of Floating Point Register Release 2 Only

MOV.fmt Floating Point Move

MOVF.fmt Floating Point Move Conditional on Floating Point False

MOVN.fmt Floating Point Move Conditional on Not Zero

MOVT.fmt Floating Point Move Conditional on Floating Point True

MOVZ.fmt Floating Point Move Conditional on Zero

MTC1 Move Word to Floating Point

MTHC1 Move Word to High Half of Floating Point Register Release 2 Only

Table 3-17 Obsolete1 FPU Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3-18 Coprocessor Branch Instructions

Mnemonic Instruction

BC2F Branch on COP2 False

BC2T Branch on COP2 True

Table 3-15 FPU Load, Store, and Memory Control Instructions

Mnemonic Instruction



3.2 Alphabetical List of Instructions

MIPS32® Architecture For Programmers Volume II, Revision 2.50 31

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-19 Coprocessor Execute Instructions

Mnemonic Instruction

COP2 Coprocessor Operation to Coprocessor 2

Table 3-20 Coprocessor Load and Store Instructions

Mnemonic Instruction

LDC2 Load Doubleword to Coprocessor 2

LWC2 Load Word to Coprocessor 2

SDC2 Store Doubleword from Coprocessor 2

SWC2 Store Word from Coprocessor 2

Table 3-21 Coprocessor Move Instructions

Mnemonic Instruction

CFC2 Move Control Word from Coprocessor 2

CTC2 Move Control Word to Coprocessor 2

MFC2 Move Word from Coprocessor 2

MFHC2 Move Word from High Half of Coprocessor 2 Register Release 2 Only

MTC2 Move Word to Coprocessor 2

MTHC2 Move Word to High Half of Coprocessor 2 Register Release 2 Only

Table 3-22 Obsolete1 Coprocessor Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.

Mnemonic Instruction

BC2FL Branch on COP2 False Likely

BC2TL Branch on COP2 True Likely

Table 3-23 Privileged Instructions

Mnemonic Instruction

CACHE Perform Cache Operation

DI Disable Interrupts Release 2 Only

EI Enable Interrupts Release 2 Only

ERET Exception Return

MFC0 Move from Coprocessor 0

MTC0 Move to Coprocessor 0



32 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32® Instruction Set

RDPGPR Read GPR from Previous Shadow Set Release 2 Only

TLBP Probe TLB for Matching Entry

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

WAIT Enter Standby Mode

WRPGPR Write GPR to Previous Shadow Set Release 2 Only

Table 3-24 EJTAG Instructions

Mnemonic Instruction

DERET Debug Exception Return

SDBBP Software Debug Breakpoint

Table 3-23 Privileged Instructions

Mnemonic Instruction



MIPS32® Architecture For Programmers Volume II, Revision 2.50 33

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ABS.fmt

Format: ABS.S fd, fs MIPS32
ABS.D fd, fs MIPS32
ABS.PS fd, fs MIPS64, MIPS32 Release 2

Purpose:

To compute the absolute value of an FP value

Description: FPR[fd] ← abs(FPR[fs])

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are values in format fmt.
ABS.PS takes the absolute value of the two values in FPR fs independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bits if no exception is taken.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of ABS.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ABS

000101

6 5 5 5 5 6

Floating Point Absolute Value ABS.fmt



34 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ADD

Format: ADD rd, rs, rt MIPS32

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD



MIPS32® Architecture For Programmers Volume II, Revision 2.50 35

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ADD.fmt

Format: ADD.S fd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32
ADD.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To add floating point values

Description: FPR[fd] ← FPR[fs] + FPR[ft]

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of ADD.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

ADD

000000

6 5 5 5 5 6

Floating Point Add ADD.fmt



36 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ADDI

Format: ADDI rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] ¨ GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + sign_extend(immediate)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

ADDI

001000
rs rt immediate

6 5 5 16

Add Immediate Word ADDI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 37

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ADDIU

Format: ADDIU rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + sign_extend(immediate)
GPR[rt]← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU



38 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ADDU

Format: ADDU rd, rs, rt MIPS32

Purpose:

To add 32-bit integers

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADDU

100001

6 5 5 5 5 6

Add Unsigned Word ADDU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 39

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ALNV.PS

Format: ALNV.PS fd, fs, ft, rs MIPS64, MIPS32 Release 2

Purpose:

To align a misaligned pair of paired single values

Description: FPR[fd] ← ByteAlign(GPR[rs]2..0, FPR[fs], FPR[ft])

FPR fs is concatenated with FPR ft and this value is funnel-shifted by GPR rs2..0 bytes, and written into FPR fd. If
GPR rs2..0 is 0, FPR fd receives FPR fs. If GPR rs2..0 is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper half of
FPR fd receives the lower half of the paired single value in fs, and the lower half of FPR fd receives the upper half of
the paired single value in FPR ft.

Figure 3-1 Example of an ALNV.PS Operation

The move is nonarithmetic; it causes no IEEE 754 exceptions.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
rs ft fs fd

ALNV.PS

011110

6 5 5 5 5 6

Floating Point Align Variable ALNV.PS

63 3132 0

63 3132 0

63 3132 0

FPR[ft]

FPR[fd]

FPR[fs]



40 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

If GPR rs1..0 are non-zero, the results are UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rs]2..0 = 0 then
StoreFPR(fd, PS,ValueFPR(fs,PS))

else if GPR[rs]2..0 ≠ 4 then
UNPREDICTABLE

else if BigEndianCPU then
StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft,PS)63..32)

else
StoreFPR(fd, PS, ValueFPR(ft, PS)31..0 || ValueFPR(fs,PS)63..32)

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PS is designed to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:
/* Copy T2 bytes (a multiple of 16) of data T0 to T1, T0 unaligned, T1 aligned.

Reads one dw beyond the end of T0. */
LUXC1 F0, 0(T0) /* set up by reading 1st src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, T0, 8 /* base for odd dw loads */
ADDIU T5, T1, -8/* base for odd dw stores */

LOOP:
LUXC1 F1, T3(T4)
ALNV.PS F2, F0, F1, T0/* switch F0, F1 for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 F0, T3(T0)
ALNV.PS F2, F1, F0, T0/* switch F1, F0 for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)

DONE:

Floating Point Align Variable (cont.) ALNV.PS



MIPS32® Architecture For Programmers Volume II, Revision 2.50 41

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ALNV.PS is also useful with SUXC1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = T0[i] + F8, T0 aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes 1st pair into F0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get T0[i+2]/T0[i+3] */
ADD.PS F1, F2, F8/* compute T1[i+2]/T1[i+3] */
ALNV.PS F3, F0, F1, T1/* align to dst memory */
SUXC1 F3, T3(T1)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* i = i + 4 */
LDC1 F2, T3(T0)/* get T0[i+0]/T0[i+1] */
ADD.PS F0, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, F0, T1/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of F0, depending on T1 alignment */

Floating Point Align Variable (cont.) ALNV.PS



42 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

AND

Format: AND rd, rs, rt MIPS32

Purpose:

To do a bitwise logical AND

Description: GPR[rd] ← GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

AND

100100

6 5 5 5 5 6

And AND



MIPS32® Architecture For Programmers Volume II, Revision 2.50 43

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ANDI

Format: ANDI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical AND with a constant

Description: GPR[rt] ← GPR[rs] AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical AND
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI

001100
rs rt immediate

6 5 5 16

And Immediate ANDI



44 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

B

Format: B offset Assembly Idiom

Purpose:

To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BEQ

000100

0

00000

0

00000
offset

6 5 5 16

Unconditional Branch B



MIPS32® Architecture For Programmers Volume II, Revision 2.50 45

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BAL

Format: BAL rs, offset Assembly Idiom

Purpose:

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BGEZAL r0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
re-executed. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 02)
GPR[31] ← PC + 8

I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001

0

00000

BGEZAL

10001
offset

6 5 5 16

Branch and Link BAL



46 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1F

Format: BC1F   offset (cc = 0 implied) MIPS32
BC1F   cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc is false (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on FP False BC1F



MIPS32® Architecture For Programmers Volume II, Revision 2.50 47

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architectures there must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on FP False (cont.) BC1F



48 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1FL

Format: BC1FL   offset (cc = 0 implied) MIPS32
BC1FL   cc, offset MIPS32

Purpose:

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if FPConditionCode(cc) = 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code bit cc is false (0), the program branches to the effective target address after the instruction in the delay
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on FP False Likely BC1FL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 49

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrs there must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on FP False Likely (cont.) BC1FL



50 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1T

Format: BC1T offset (cc = 0 implied) MIPS32
BC1T cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 1 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc is true (1), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on FP True BC1T



MIPS32® Architecture For Programmers Volume II, Revision 2.50 51

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architectures there must be at least one instruction between the compare instruction that sets
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on FP True (cont.) BC1T



52 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1TL

Format: BC1TL   offset (cc = 0 implied) MIPS32
BC1TL   cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only if
the branch is taken.

Description: if FPConditionCode(cc) = 1 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code bit cc is true (1), the program branches to the effective target address after the instruction in the delay slot
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on FP True Likely BC1TL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 53

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC1T instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrs there must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on FP True Likely (cont.) BC1TL



54 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC2F

Format: BC2F   offset (cc = 0 implied) MIPS32
BC2F   cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if COP2Condition(cc) = 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False BC2F



MIPS32® Architecture For Programmers Volume II, Revision 2.50 55

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC2FL

Format: BC2FL   offset (cc = 0 implied) MIPS32
BC2FL   cc, offset MIPS32

Purpose:

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the delay slot
only if the branch is taken.

Description: if COP2Condition(cc) = 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False Likely BC2FL



56 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2F instruction instead.

Branch on COP2 False Likely (cont.) BC2FL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 57

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC2T

Format: BC2T offset (cc = 0 implied) MIPS32
BC2T cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if COP2Condition(cc) = 1 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True BC2T



58 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BC2TL

Format: BC2TL   offset (cc = 0 implied) MIPS32
BC2TL   cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if COP2Condition(cc) = 1 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True Likely BC2TL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 59

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2T instruction instead.

Branch on COP2 True Likely (cont.) BC2TL



60 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BEQ

Format: BEQ rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] = GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

31 26 25 21 20 16 15 0

BEQ

000100
rs rt offset

6 5 5 16

Branch on Equal BEQ



MIPS32® Architecture For Programmers Volume II, Revision 2.50 61

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BEQL

Format: BEQL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] = GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction in the delay slot is
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BEQL

010100
rs rt offset

6 5 5 16

Branch on Equal Likely BEQL



62 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BEQ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Equal Likely (cont.) BEQL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 63

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BGEZ

Format: BGEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] ≥ 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZ

00001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ



64 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BGEZAL

Format: BGEZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN
GPR[31] ← PC + 8

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZAL

10001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link BGEZAL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 65

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BGEZALL

Format: BGEZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≥ 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN
GPR[31] ← PC + 8

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZALL

10011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL



66 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZAL instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than or Equal to Zero and Link Likely (con’t.) BGEZALL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 67

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BGEZL

Format: BGEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≥ 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZL

00011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero Likely BGEZL



68 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than or Equal to Zero Likely (cont.) BGEZL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 69

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BGTZ

Format: BGTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] > 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BGTZ

000111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero BGTZ



70 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BGTZL

Format: BGTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BGTZL

010111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero Likely BGTZL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 71

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than Zero Likely (cont.) BGTZL



72 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BLEZ

Format: BLEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] ≤ 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BLEZ

000110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero BLEZ



MIPS32® Architecture For Programmers Volume II, Revision 2.50 73

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BLEZL

Format: BLEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≤ 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is
not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BLEZL

010110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero Likely BLEZL



74 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than or Equal to Zero Likely (cont.) BLEZL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 75

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BLTZ

Format: BLTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] < 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZ

00000
offset

6 5 5 16

Branch on Less Than Zero BLTZ



76 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BLTZAL

Format: BLTZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZAL

10000
offset

6 5 5 16

Branch on Less Than Zero and Link BLTZAL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 77

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BLTZALL

Format: BLTZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZALL

10010
offset

6 5 5 16

Branch on Less Than Zero and Link Likely BLTZALL



78 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZAL instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 79

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BLTZL

Format: BLTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZL

00010
offset

6 5 5 16

Branch on Less Than Zero Likely BLTZL



80 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than Zero Likely (cont.) BLTZL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 81

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BNE

Format: BNE rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] ≠ GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

Branch on Not Equal BNE



82 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BNEL

Format: BNEL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≠ GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BNEL

010101
rs rt offset

6 5 5 16

Branch on Not Equal Likely BNEL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 83

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BNE instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Not Equal Likely (cont.) BNEL



84 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

BREAK

Format: BREAK MIPS32

Purpose:

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

SPECIAL

000000
code

BREAK

001101

6 20 6

Breakpoint BREAK



MIPS32® Architecture For Programmers Volume II, Revision 2.50 85

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

C.cond.fmt

Format: C.cond.S fs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.PS fs, ft(cc = 0 implied) MIPS64, MIPS32 Release 2
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32
C.cond.PS cc, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To compare FP values and record the Boolean result in a condition code

Description: FPUConditionCode(cc) ← FPR[fs] compare_cond FPR[ft]

The value in FPR fs is compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by cond2..1 is true for the operand values, the result is true; otherwise, the result is false. If
no exception is taken, the result is written into condition code CC; true is 1 and false is 0.

c.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the values is an SNaN, or cond3 is set and at least one of the values is a QNaN, an Invalid Operation condi-
tion is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in . Each
mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth of the first
predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column, and the sec-
ond predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do not follow
the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of the first predicate can be made with the Branch on FP True (BC1T) instruction and the truth of the second
can be made with Branch on FP False (BC1F).

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0

COP1

010001
fmt ft fs cc 0

A

0

FC

11
cond

6 5 5 5 3 1 1 2 4

Floating Point Compare C.cond.fmt



86 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-25 shows another set of eight compare operations, distinguished by a cond3 value of 1 and testing the same 16
conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, then an
Invalid Operation condition is raised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation
exception occurs.

Table 3-25 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate
Comparison CC

Result Instruction

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values

If
Predicate
 Is True

Inv Op
Excp.

if
QNaN

?

Condition
Field

> < = ? 3 2..0

F
False [this predicate is always False] F F F F

F

No 0

0
True (T) T T T T

UN
Unordered F F F T T

1
Ordered (OR) T T T F F

EQ
Equal F F T F T

2
Not Equal (NEQ) T T F T F

UEQ
Unordered or Equal F F T T T

3
Ordered or Greater Than or Less Than (OGL) T T F F F

OLT
Ordered or Less Than F T F F T

4
Unordered or Greater Than or Equal (UGE) T F T T F

ULT
Unordered or Less Than F T F T T

5
Ordered or Greater Than or Equal (OGE) T F T F F

OLE
Ordered or Less Than or Equal F T T F T

6
Unordered or Greater Than   (UGT) T F F T F

ULE
Unordered or Less Than or Equal F T T T T

7
Ordered or Greater Than   (OGT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Floating Point Compare (cont.) C.cond.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 87

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-26 FPU Comparisons With Special Operand Exceptions for QNaNs

Instruction Comparison Predicate
Comparison CC

Result
Instructio

n

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values If

Predicate
Is True

Inv  Op
Excp If
QNaN?

Condition
Field

> < = ? 3 2..0

SF
Signaling False  [this predicate always False] F F F F

F

Yes 1

0
Signaling True   (ST) T T T T

NGLE
Not Greater Than or Less Than or Equal F F F T T

1
Greater Than or Less Than or Equal   (GLE) T T T F F

SEQ
Signaling Equal F F T F T

2
Signaling Not Equal  (SNE) T T F T F

NGL
Not Greater Than or Less Than F F T T T

3
Greater Than or Less Than (GL) T T F F F

LT
Less Than F T F F T

4
Not Less Than (NLT) T F T T F

NGE
Not Greater Than or Equal F T F T T

5
Greater Than or Equal (GE) T F T F F

LE
Less Than or Equal F T T F T

6
Not Less Than or Equal   (NLE) T F F T F

NGT
Not Greater Than F T T T T

7
Greater Than   (GT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Floating Point Compare (cont.) C.cond.fmt



88 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of C.cond.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the condi-
tion code number is odd.

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then

SignalException(InvalidOperation)
endif

else
less ← ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal)

or (cond0 and unordered)
SetFPConditionCode(cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Floating Point Compare (cont.) C.cond.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 89

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

# comparisons using explicit tests for QNaN
c.eq.d $f2,$f4# check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4# it is not equal,

# but might be unordered
bc1t ERROR # unordered goes off to an error handler

# not-equal-case code here
...

# equal-case code here
L2:
# --------------------------------------------------------------
# comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

# it is not unordered here
...

# not-equal-case code here
...

# equal-case code here

Floating Point Compare (cont.) C.cond.fmt



90 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CACHE

Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Table 3-27 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Address Virtual
The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A

The effective address is translated by the MMU to a physical address. It is
implementation dependent whether the effective address or the translated physical
address is used to index the cache. As such, a kseg0 address should always be used
for cache operations that require an index. See the Programming Notes section
below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← AddrWayBit-1..IndexBit
Index ← AddrIndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

Perform Cache Operation CACHE



MIPS32® Architecture For Programmers Volume II, Revision 2.50 91

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Figure 3-2 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

Table 3-28 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

0b11 S Secondary

Perform Cache Operation CACHE

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index



92 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance

Implemented

0b000

I Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This required encoding may be used by
software to invalidate the entire instruction
cache by stepping through all valid indices.

Required

D
Index Writeback
Invalidate / Index

Invalidate
Index

For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.

This required encoding may be used by
software to invalidate the entire data cache by
stepping through all valid indices. Note that
Index Store Tag should be used to initialize the
cache at powerup.

Required

S, T
Index Writeback
Invalidate / Index

Invalidate
Index Optional

0b001 All Index Load Tag Index

Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data
corresponding to the byte index into the
DataLo and DataHi registers. This operation
must not cause a Cache Error Exception.

The granularity and alignment of the data read
into the DataLo and DataHi registers is
implementation-dependent, but is typically the
result of an aligned access to the cache,
ignoring the appropriate low-order bits of the
byte index.

Recommended

Perform Cache Operation CACHE



MIPS32® Architecture For Programmers Volume II, Revision 2.50 93

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

0b010 All Index Store Tag Index

Write the tag for the cache block at the
specified index from the TagLo and TagHi
Coprocessor 0 registers. This operation must
not cause a Cache Error Exception.

This required encoding may be used by
software to initialize the entire instruction or
data caches by stepping through all valid
indices. Doing so requires that the TagLo and
TagHi registers associated with the cache be
initialized first.

Required

0b011 All Implementation
Dependent Unspecified

Available for implementation-dependent
operation. Optional

0b100

I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

This required encoding may be used by
software to invalidate a range of addresses
from the instruction cache by stepping through
the address range by the line size of the cache.

Required
(Instruction Cache
Encoding Only),
Recommended

otherwise

S, T Hit Invalidate Address Optional

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance

Implemented



94 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

0b101

I Fill Address
Fill the cache from the specified address.

Recommended

D
Hit Writeback
Invalidate / Hit

Invalidate
Address

For a write-back cache: If the cache block
contains the specified address and it is valid
and dirty, write the contents back to memory.
After that operation is completed, set the state
of the cache block to invalid. If the block is
valid but not dirty, set the state of the block to
invalid.

For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by
software to invalidate a range of addresses
from the data cache by stepping through the
address range by the line size of the cache.

Required

S, T
Hit Writeback
Invalidate / Hit

Invalidate
Address Optional

0b110

D Hit Writeback Address If the cache block contains the specified
address and it is valid and dirty, write the
contents back to memory. After the operation is
completed, leave the state of the line valid, but
clear the dirty state. For a write-through cache,
this operation may be treated as a nop.

Recommended

S, T Hit Writeback Address Optional

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance

Implemented



MIPS32® Architecture For Programmers Volume II, Revision 2.50 95

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

0b111 I, D Fetch and Lock Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In
set-associative or fully-associative caches, the
way selected on a fill from memory is
implementation dependent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears the
lock bit. Note that clearing the lock state via
Index Store Tag is dependent on the
implementation-dependent cache tag and
cache line organization, and that Index and
Index Writeback Invalidate operations are
dependent on cache line organization. Only Hit
and Hit Writeback Invalidate operations are
generally portable across implementations.

It is implementation dependent whether a
locked line is displaced as the result of an
external invalidate or intervention that hits on
the locked line. Software must not depend on
the locked line remaining in the cache if an
external invalidate or intervention would
invalidate the line if it were not locked.

It is implementation dependent whether a
Fetch and Lock operation affects more than
one line. For example, more than one line
around the referenced address may be fetched
and locked. It is recommended that only the
single line containing the referenced address be
affected.

Recommended

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance

Implemented



96 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

Perform Cache Operation (cont.) CACHE



MIPS32® Architecture For Programmers Volume II, Revision 2.50 97

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CEIL.L.fmt

Format: CEIL.L.S   fd, fs MIPS64, MIPS32 Release 2
CEIL.L.D   fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding up

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, a d the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.L

001010

6 5 5 5 5 6

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt



98 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Fixed Point Ceiling Convert to Long Fixed Point (cont.) CEIL.L.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 99

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CEIL.W.fmt

Format: CEIL.W.S   fd, fs MIPS32
CEIL.W.D   fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.W

001110

6 5 5 5 5 6

Floating Point Ceiling Convert to Word Fixed Point CEIL.W.fmt



100 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CFC1

Format: CFC1 rt, fs MIPS32

Purpose:

To copy a word from an FPU control register to a GPR

Description: GPR[rt] ← FP_Control[FPR[fs]]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt.

Restrictions:

There are a few control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifies a
register that does not exist.

Operation:

if fs = 0 then
temp ← FIR

elseif fs = 25 then
temp ← 024 || FCSR31..25 || FCSR23

elseif fs = 26 then
temp ← 014 || FCSR17..12 || 0

5 || FCSR6..2 || 0
2

elseif fs = 28 then
temp ← 020 || FCSR11.7 || 0

4 || FCSR24 || FCSR1..0
elseif fs = 31 then

temp ← FCSR
else

temp ← UNPREDICTABLE
endif
GPR[rt] ← temp

31 26 25 21 20 16 15 11 10 0

COP1

010001

CF

00010
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word From Floating Point CFC1



MIPS32® Architecture For Programmers Volume II, Revision 2.50 101

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, II and III architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

Move Control Word From Floating Point (cont.) CFC1



102 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CFC2

Format: CFC2 rt, rd MIPS32

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a Coprocessor 2 control register to a GPR

Description: GPR[rt] ← CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field. The interpretation of the Impl
field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ← CP2CCR[Impl]
GPR[rt] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CF

00010
rt Impl

6 5 5 16

Move Control Word From Coprocessor 2 CFC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 103

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CLO

Format: CLO rd, rs MIPS32

Purpose:

To Count the number of leading ones in a word

Description: GPR[rd] ← count_leading_ones GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPR rd. If all of bits 31..0 were set in GPR rs, the result written to GPR rd is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values.

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs]i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLO

100001

6 5 5 5 5 6

Count Leading Ones in Word CLO



104 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CLZ

Format: CLZ rd, rs MIPS32

Purpose

Count the number of leading zeros in a word

Description: GPR[rd] ← count_leading_zeros GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPR rd. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values.

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs]i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLZ

100000

6 5 5 5 5 6

Count Leading Zeros in Word CLZ



MIPS32® Architecture For Programmers Volume II, Revision 2.50 105

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

COP2

Format: COP2 func MIPS32

Purpose:

To performance an operation to Coprocessor 2

Description: CoprocessorOperation(2, cofun)

An implementation-dependent operation is performance to Coprocessor 2, with the cofun value passed as an argu-
ment. The operation may specify and reference internal coprocessor registers, and may change the state of the copro-
cessor conditions, but does not modify state within the processor. Details of coprocessor operation and internal state
are described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation(2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

31 26 25 24 0

COP2

010010

CO

1
cofun

6 1 25

Coprocessor Operation to Coprocessor 2 COP2



106 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CTC1

Format: CTC1   rt, fs MIPS32

Purpose:

To copy a word from a GPR to an FPU control register

Description: FP_Control[fs] ← GPR[rt]

Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit and
its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR to set a
cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set causes
the appropriate exception. The register is written before the exception occurs and the EPC register contains the
address of the CTC1 instruction.

Restrictions:

There are a few control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifies a
register that does not exist.

31 26 25 21 20 16 15 11 10 0

COP1

010001

CT

00110
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word to Floating Point CTC1



MIPS32® Architecture For Programmers Volume II, Revision 2.50 107

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

temp ← GPR[rt]31..0
if fs = 25 then /* FCCR */

if temp31..8 ≠ 024 then
UNPREDICTABLE

else
FCSR ← temp7..1 || FCSR24 || temp0 || FCSR22..0

endif
elseif fs = 26 then /* FEXR */

if temp22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..18 || temp17..12 || FCSR11..7 ||
temp6..2 || FCSR1..0

endif
elseif fs = 28 then /* FENR */

if temp22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..25 || temp2 || FCSR23..12 || temp11..7
|| FCSR6..2 || temp1..0

endif
elseif fs = 31 then /* FCSR */

if temp22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← temp

endif
else

UNPREDICTABLE
endif

CheckFPException()Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control register fs are undefined for the instruc-
tion immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

Move Control Word to Floating Point (cont.) CTC1



108 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CTC2

Format: CTC2 rt, rd MIPS32

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] ← GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ← GPR[rt]
CP2CCR[Impl] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CT

00110
rt Impl

6 5 5 16

Move Control Word to Coprocessor 2 CTC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 109

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.D.fmt

Format: CVT.D.S fd, fs MIPS32
CVT.D.W fd, fs MIPS32
CVT.D.L fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert an FP or fixed point value to double FP

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd. If fmt is S or W, then the operation is always
exact.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for double floating point—if they are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.D

100001

6 5 5 5 5 6

Floating Point Convert to Double Floating Point CVT.D.fmt



110 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.L.fmt

Format: CVT.L.S fd, fs MIPS64, MIPS32 Release 2
CVT.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert an FP value to a 64-bit fixed point

Description: FPR[fd] ← convert_and_round(FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.L

100101

6 5 5 5 5 6

Floating Point Convert to Long Fixed Point CVT.L.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 111

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Floating Point Convert to Long Fixed Point, cont. CVT.L.fmt



112 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.PS.S

Format: CVT.PS.S fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To convert two FP values to a paired single value

Description: FPR[fd] ← FPR[fs]31..0 || FPR[ft]31..0

The single-precision values in FPR fs and ft are written into FPR fd as a paired-single value. The value in FPR fs is
written into the upper half, and the value in FPR ft is written into the lower half.

CVT.PS.S is similar to PLL.PS, except that it expects operands of format S instead of PS.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type S; if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format S; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10000

ft fs fd
CVT.PS
100110

6 5 5 5 5 6

Floating Point Convert Pair to Paired Single CVT.PS.S

31 310 0

63 3132 0

fs ft

fd



MIPS32® Architecture For Programmers Volume II, Revision 2.50 113

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation

Floating Point Convert Pair to Paired Single (cont.) CVT.PS.S



114 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.S.fmt

Format: CVT.S.D fd, fs MIPS32
CVT.S.W fd, fs MIPS32
CVT.S.L fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert an FP or fixed point value to single FP

Description: FPR[fd] ← convert_and_round(GPR[fs])

The value in FPR fs, in format fmt, is converted to a value in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:

StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.S

100000

6 5 5 5 5 6

Floating Point Convert to Single Floating Point CVT.S.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 115

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.S.PL

Format: CVT.S.PL fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert one half of a paired single FP value to single FP

Description: GPR[fd] ← convert_and_round(GPR[fs])

The lower paired single value in FPR fs, in format PS, is converted to a value in single floating point format and
rounded according to the current rounding mode in FCSR. The result is placed in FPR fd. This instruction can be used
to isolate the lower half of a paired single value.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PL is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PL, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110

0

00000
fs fd

CVT.S.PL

101000

6 5 5 5 5 6

Floating Point Convert Pair Lower to Single Floating Point CVT.S.PL



116 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.S.PU

Format: CVT.S.PU fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert one half of a paired single FP value to single FP

Description: FPR[fd] ← convert_and_round(FPR[fs])

The upper paired single value in FPR fs, in format PS, is converted to a value in single floating point format and
rounded according to the current rounding mode in FCSR. The result is placed in FPR fd. This instruction can be used
to isolate the upper half of a paired single value.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PU is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PU, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110

0

00000
fs fd

CVT.S.PU

100000

6 5 5 5 5 6

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 117

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.W.fmt

Format: CVT.W.S fd, fs MIPS32
CVT.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.W

100100

6 5 5 5 5 6

Floating Point Convert to Word Fixed Point CVT.W.fmt



118 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

DERET

Format: DERET EJTAG

Purpose:

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instruction, a
CP0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the processor is UNDE-
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Debug Exception Return DERET



MIPS32® Architecture For Programmers Volume II, Revision 2.50 119

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPC31..1 || 0
ISAMode ← DEPC0

else
PC ← DEPC

endif
ClearHazards()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

Debug Exception Return (cont.) DERET



120 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

DI

Format: DI MIPS32 Release 2
DI rt MIPS32 Release 2

Purpose:

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rt] ← Status; StatusIE ← 0

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and EI have a specific value for the sc field.

data ← Status
GPR[rt] ← data
StatusIE ← 0

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0100 00

MFMC0
01 011 rt 12

0110 0
0

000 00
sc
0

0
0 0

0
000

6 5 5 5 5 1 2 3

Disable Interrupts DI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 121

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, clear-
ing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI instruc-
tion can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

Disable Interrupts, cont. DI



122 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

DIV

Format: DIV rs, rt MIPS32

Purpose:

To divide a 32-bit signed integers

Description: (HI, LO) ← GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder isplaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:
q ← GPR[rs]31..0 div GPR[rt]31..0
LO ← q
r ← GPR[rs]31..0 mod GPR[rt]31..0
HI ← r

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIV

011010

6 5 5 10 6

Divide Word DIV



MIPS32® Architecture For Programmers Volume II, Revision 2.50 123

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

Divide Word (cont.) DIV



124 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

DIV.fmt

Format: DIV.S fd, fs, ft MIPS32
DIV.D fd, fs, ft MIPS32

Purpose:

To divide FP values

Description: FPR[fd] ← FPR[fs] / FPR[ft]

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRED-
ICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

DIV

000011

6 5 5 5 5 6

Floating Point Divide DIV.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 125

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

DIVU

Format: DIVU rs, rt MIPS32

Purpose:

To divide a 32-bit unsigned integers

Description: (HI, LO) ← GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:

q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
LO ← sign_extend(q31..0)
HI ← sign_extend(r31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Divide Unsigned Word DIVU



126 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

EHB

Format: EHB MIPS32 Release 2

Purpose:

To stop instruction execution until all execution hazards have been cleared.

Description:

EHB is the assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
ware as SLL r0, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execution
hazards have been cleared. Other than those that might be created as a consequence of setting StatusCU0, there are no
execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by previ-
ous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is executed in
the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards - such hazards are cleared
by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards()

Exceptions:

None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB alters the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have already cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

3

00011

SLL

000000

6 5 5 5 5 6

Execution Hazard Barrier EHB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 127

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

EI

Format: EI MIPS32 Release 2
EI rt MIPS32 Release 2

Purpose:

To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rt] ← Status; StatusIE ← 1

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and EI have a specific value for the sc field.

data ← Status
GPR[rt] ← data
StatusIE ← 1

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0100 00

MFMC0
01 011 rt 12

0110 0
0

000 00
sc
1

0
0 0

0
000

6 5 5 5 5 1 2 3

Enable Interrupts EI



128 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI instruc-
tion can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

Enable Interrupts, cont. EI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 129

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ERET

Format: ERET MIPS32

Purpose:

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS in a Release 2
implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlCSS from SRSCtlPSS if StatusBEV = 1, or if StatusERL =
1 because any exception that sets StatusERL to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlCSS in
SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an ERET that may be subsequently
executed.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

ERET

011000

6 1 19 6

Exception Return ERET



130 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

if StatusERL = 1 then
temp ← ErrorEPC
StatusERL ← 0

else
temp ← EPC
StatusEXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0)then

SRSCtlCSS ← SRSCtlPSS
endif

endif
if IsMIPS16Implemented() then

PC ← temp31..1 || 0
ISAMode ← temp0

else
PC ← temp

endif
LLbit ← 0
ClearHazards()

Exceptions:
Coprocessor Unusable Exception

Exception Return ERET



MIPS32® Architecture For Programmers Volume II, Revision 2.50 131

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

EXT

Format: ext rt, rs, pos, size MIPS32 Release 2

Purpose:

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ← ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and lsb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ← size-1
lsb ← pos

The values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-3 shows the symbolic operation of the instruction.

Restrictions:

In implementations prior to Release of the architecture, this instruction resulted in a Reserved Instruction Exception.

The operation is UNPREDICTABLE if lsb+msbd > 31.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111
rs rt msbd

(size-1)
lsb

(pos)

EXT

000000

6 5 5 5 5 6

Extract Bit Field EXT

Figure 3-3 Operation of the EXT Instruction

31 pos+size
lsb+msbd+1

 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial
Value

IJKL MNOP QRST

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

31 size
msbd+1

size-1
 msbd 0

GPR rt
Final Value

0 MNOP

32-size
32-(msbd+1)

size
msbd+1



132 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

if (lsb + msbd) > 31) then
UNPREDICTABLE

endif
temp ← 032-(msbd+1) || GPR[rs]msbd+lsb..lsb
GPR[rt] ← temp

Exceptions:

Reserved Instruction

Extract Bit Field, cont. EXT



MIPS32® Architecture For Programmers Volume II, Revision 2.50 133

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

FLOOR.L.fmt

Format: FLOOR.L.S fd, fs MIPS64, MIPS32 Release 2
FLOOR.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward -∞
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.L

001011

6 5 5 5 5 6

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt



134 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Floating Point Floor Convert to Long Fixed Point (cont.) FLOOR.L.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 135

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

FLOOR.W.fmt

Format: FLOOR.W.S   fd, fs MIPS32
FLOOR.W.D   fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward –∞
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.W

001111

6 5 5 5 5 6

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt



136 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

INS

Format: ins rt, rs, pos, size MIPS32 Release 2

Purpose:

To merge a right-justified bit field from GPR rs into a specified field in GPR rt.

Description: GPR[rt] ← InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result
isplaced back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msb (the most significant bit of the field), in instruction bits 15..11, and lsb (least significant bit of
the field), in instruction bits 10..6, as follows:

msb ← pos+size-1
lsb ← pos

The values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-4 shows the symbolic operation of the instruction.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111
rs rt msb

(pos+size-1)
lsb

(pos)
INS

000100

6 5 5 5 5 6

Insert Bit Field INS

Figure 3-4 Operation of the INS Instruction

31 size
msb-lsb+1

 size-1
 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

31 pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial
Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

31 pos+size
msb+1

pos+size-1
msb

pos
lsb

pos-1
lsb-1 0

GPR rt
Final Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb



MIPS32® Architecture For Programmers Volume II, Revision 2.50 137

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if lsb > msb.

Operation:

if lsb > msb) then
UNPREDICTABLE

endif
GPR[rt] ← GPR[rt]31..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction

Insert Bit Field, cont. INS



138 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

J

Format: J target MIPS32

Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I:
I+1:PC ← PCGPRLEN-1..28 || instr_index || 0

2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

J

000010
instr_index

6 26

Jump J



MIPS32® Architecture For Programmers Volume II, Revision 2.50 139

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

JAL

Format: JAL target MIPS32

Purpose:

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31]← PC + 8
I+1:PC ← PCGPRLEN-1..28 || instr_index || 0

2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JAL

000011
instr_index

6 26

Jump and Link JAL



140 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

JALR

Format: JALR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose:

To execute a procedure call to an instruction address in a register

Description: GPR[rd] ← return_addr, PC ← GPR[rs]

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself.

For processors that do implement the MIPS16e ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit 0 of the source register is one

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JALR. In Release
2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction descrip-
tion for additional information.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit 0 is zero and bit
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs

0

00000
rd hint

JALR

001001

6 5 5 5 5 6

Jump and Link Register JALR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 141

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1:if Config1CA = 0 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instructions use
GPR 31. The default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register, cont. JALR



142 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

JALR.HB

Format: JALR.HB rs (rd = 31 implied) MIPS32 Release 2
JALR.HB rd, rs MIPS32 Release 2

Purpose:

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: GPR[rd] ← return_addr, PC ← GPR[rs], clear execution and instruction haz-
ards

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit 0 of the source register is one

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JALR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JALR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

31 26 25 21 20 16 15 11 10 9 6 5 0

SPECIAL

000000
rs

0

00000
rd 1 Any other legal

hint value

JALR

001001

6 5 5 5 1 4 6

Jump and Link Register with Hazard Barrier JALR.HB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 143

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions, cont.:

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1:if Config1CA = 0 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

JALR and JALR.HB are the only branch-and-link instructions that can select a register for the return link; all other
link instructions use GPR 31. The default register for GPR rd, if omitted in the assembly language instruction, is
GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Jump and Link Register with Hazard Barrier, cont. JALR.HB



144 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Example: Clearing hazards due to an ASID change
/*
 * Code used to modify ASID and call a routine with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 * a1 = Address of the routine to call
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb a1 /* Call routine, clearing the hazard */
nop

Jump and Link Register with Hazard Barrier, cont. JALR.HB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 145

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

JR

Format: JR rs MIPS32

Purpose:

To execute a branch to an instruction address in a register

Description: PC ← GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement the MIPS16e ASE, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit 0 is zero and bit
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1:if Config1CA = 0 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:

None

31 26 25 21 20 11 10 6 5 0

SPECIAL

000000
rs

0

00 0000 0000
hint

JR

001000

6 5 10 5 6

Jump Register JR



146 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

Jump Register, cont. JR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 147

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

JR.HB

Format: JR.HB rs MIPS32 Release 2

Purpose:

To execute a branch to an instruction address in a register and clear all execution and instruction hazards.

Description: PC ← GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

For processors that implement the MIPS16 ASE, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET. Fur-
ther, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only haz-
ards created by instructions executed before the JR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

31 26 25 21 20 11 10 9 6 5 0

SPECIAL

000000
rs

0

00 0000 0000
1 Any other legal

hint value

JR

001000

6 5 10 1 4 6

Jump Register with Hazard Barrier JR.HB



148 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

I: temp ← GPR[rs]
I+1:if Config1CA = 0 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Routine called to modify ASID and return with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making a write to the instruction stream visible

/*
 * Routine called after new instructions are written to
 * make them visible and return with the hazards cleared.
 */

{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Jump Register with Hazard Barrier, cont. JR.HB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 149

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Example: Clearing instruction hazards in-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /*   hazards */

10:

Jump Register with Hazard Barrier, cont. JR.HB



150 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LB

Format: LB rt, offset(base) MIPS32

Purpose:

To load a byte from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt]← sign_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LB

100000
base rt offset

6 5 5 16

Load Byte LB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 151

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LBU

Format: LBU rt, offset(base) MIPS32

Purpose:

To load a byte from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt]← zero_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LBU

100100
base rt offset

6 5 5 16

Load Byte Unsigned LBU



152 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LDC1

Format: LDC1 ft, offset(base) MIPS32

Purpose:

To load a doubleword from memory to an FPR

Description: FPR[ft] ← memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
memmsw ← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ← memmsw || memlsw
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC1

110101
base ft offset

6 5 5 16

Load Doubleword to Floating Point LDC1



MIPS32® Architecture For Programmers Volume II, Revision 2.50 153

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LDC2

Format: LDC2 rt, offset(base) MIPS32

Purpose:

To load a doubleword from memory to a Coprocessor 2 register

Description: CPR[2,rt,0] ← memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
memmsw ← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
memlsw
memmsw

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC2

110110
base rt offset

6 5 5 16

Load Doubleword to Coprocessor 2 LDC2



154 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LDXC1

Format: LDXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ← memory[GPR[base] + GPR[index]]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR fd. The contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
memmsw ← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ← memmsw || memlsw
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LDXC1

000001

6 5 5 5 5 6

Load Doubleword Indexed to Floating Point LDXC1



MIPS32® Architecture For Programmers Volume II, Revision 2.50 155

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LH

Format: LH rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LH

100001
base rt offset

6 5 5 16

Load Halfword LH



156 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LHU

Format: LHU rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LHU

100101
base rt offset

6 5 5 16

Load Halfword Unsigned LHU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 157

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LL

Format: LL rt, offset(base) MIPS32

Purpose:

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

31 26 25 21 20 16 15 0

LL

110000
base rt offset

6 5 5 16

Load Linked Word LL



158 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Load Linked Word (cont.) LL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 159

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LUI

Format: LUI rt, immediate MIPS32

Purpose:

To load a constant into the upper half of a word

Description: GPR[rt] ← immediate || 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← immediate || 016

Exceptions:

None

31 26 25 21 20 16 15 0

LUI

001111

0

00000
rt immediate

6 5 5 16

Load Upper Immediate LUI



160 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LUXC1

Format: LUXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[fd] ← memory[(GPR[base] + GPR[index])PSIZE-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective address.
The effective address is doubleword-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index])63..3 || 0
3

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
memmsw ← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ← memmsw || memlsw
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LUXC1

000101

6 5 5 5 5 6

Load Doubleword Indexed Unaligned to Floating Point LUXC1



MIPS32® Architecture For Programmers Volume II, Revision 2.50 161

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LW

Format: LW rt, offset(base) MIPS32

Purpose:

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Load Word LW



162 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LWC1

Format: LWC1 ft, offset(base) MIPS32

Purpose:

To load a word from memory to an FPR

Description: FPR[ft] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC1

110001
base rt offset

6 5 5 16

Load Word to Floating Point LWC1



MIPS32® Architecture For Programmers Volume II, Revision 2.50 163

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LWC2

Format: LWC2 rt, offset(base) MIPS32

Purpose:

To load a word from memory to a COP2 register

Description: CPR[2,rt,0] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The 16-bit signed offset is added to the contents
of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr12..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)

CPR[2,rt,0] ← memword

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC2

110010
base rt offset

6 5 5 16

Load Word to Coprocessor 2 LWC2



164 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LWL

Format: LWL rt, offset(base) MIPS32

Purpose:

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: GPR[rt] ← GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of W is in the aligned word containing the EffAddr. This part of W is loaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPR rt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 3-5 Unaligned Word Load Using LWL and LWR

31 26 25 21 20 16 15 0

LWL

100010
base rt offset

6 5 5 16

Load Word Left LWL

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

2 3 g h After executing LWL $24,2($0)

2 3 4 5 Then after LWR $24,5($0)



MIPS32® Architecture For Programmers Volume II, Revision 2.50 165

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the processor
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

Figure 3-6 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) e f g h

3 2 1 0 ←little-endian most least

most least — significance —

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian

I J K L 0 L f g h

J K L h 1 K L g h

K L g h 2 J K L h

L f g h 3 I J K L

Load Word Left (con’t) LWL



166 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
if BigEndianMem = 0 then

pAddr← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU

2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword7+8*byte..0 || GPR[rt]23-8*byte..0
GPR[rt]← temp

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same
destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruction. All
such restrictions were removed from the architecture in MIPS II.

Load Word Left (con’t) LWL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 167

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LWR

Format: LWR rt, offset(base) MIPS32

Purpose:

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: GPR[rt] ← GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing EffAddr. This part of W is loaded into
the least-significant (right) part of the word in GPR rt. The remaining most-significant part of the word in GPR rt is
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination register.
Next, the complementary LWL loads the remainder of the unaligned word.

31 26 25 21 20 16 15 0

LWR

100110
base rt offset

6 5 5 16

Load Word Right LWR



168 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Figure 3-7 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the processor
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

Load Word Right (cont.) LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

e f 4 5 After executing LWR $24,5($0)

2 3 4 5 Then after LWL $24,2($0)



MIPS32® Architecture For Programmers Volume II, Revision 2.50 169

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Figure 3-8 Bytes Loaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) e f g h

3 2 1 0 ←little-endian most least

most least — significance—

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian Little-endian

e f g I 0 I J K L

e f I J 1 e I J K

e I J K 2 e f I J

I J K L 3 e f g I

Load Word Right (cont.) LWR



170 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
if BigEndianMem = 0 then

pAddr← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU

2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword31..32-8*byte || GPR[rt]31–8*byte..0
GPR[rt]← temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same
destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruction. All
such restrictions were removed from the architecture in MIPS II.

Load Word Right (cont.) LWR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 171

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

LWXC1

Format: LWXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose:

To load a word from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ← memory[GPR[base] + GPR[index]]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LWXC1

000000

6 5 5 5 5 6

Load Word Indexed to Floating Point LWXC1



172 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MADD

Format: MADD  rs, rt MIPS32

Purpose:

To multiply two words and add the result to Hi, Lo

Description: (HI,LO) ←  (HI,LO) + (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO.. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

0000

0

00000

MADD

000000

6 5 5 5 5 6

Multiply and Add Word to Hi,Lo MADD



MIPS32® Architecture For Programmers Volume II, Revision 2.50 173

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MADD.fmt

Format: MADD.S fd, fr, fs, ft MIPS64, MIPS32 Release 2
MADD.D fd, fr, fs, ft MIPS64, MIPS32 Release 2
MADD.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To perform a combined multiply-then-add of FP values

Description: FPR[fd] ← (FPR[fs] × FPR[ft]) + FPR[fr]

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
added to the product. The result sum is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MADD.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) +fmt vfr)

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MADD

100
fmt

6 5 5 5 5 3 3

Floating Point Multiply Add MADD.fmt



174 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Add (cont.) MADD.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 175

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MADDU

Format: MADDU rs, rt MIPS32

Purpose:

To multiply two unsigned words and add the result to Hi, Lo.

Description: (HI,LO) ←  (HI,LO) + (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO.. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MADDU

000001

6 5 5 5 5 6

Multiply and Add Unsigned Word to Hi,Lo MADDU



176 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MFC0

Format: MFC0 rt, rd MIPS32
MFC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[rt] ← CPR[0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are loaded into general register
rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and sel.

Operation:

data ← CPR[0,rd,sel]
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MF

00000
rt rd

0

00000000
sel

6 5 5 5 8 3

Move from Coprocessor 0 MFC0



MIPS32® Architecture For Programmers Volume II, Revision 2.50 177

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MFC1

Format: MFC1 rt, fs MIPS32

Purpose:

To copy a word from an FPU (CP1) general register to a GPR

Description: GPR[rt] ← FPR[fs]

The contents of FPR fs are  loaded into general register rt.

Restrictions:

Operation:
data ← ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] ← data

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS III the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MF

00000
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word From Floating Point MFC1



178 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MFC2

Format: MFC2 rt, rd MIPS32
MFC2, rt, rd, sel MIPS32

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a COP2 general register to a GPR

Description: GPR[rt] ← CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ← CP2CPR[Impl]
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 8 7 0

COP2

010010

MF

00000
rt Impl

6 5 5

Move Word From Coprocessor 2 MFC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 179

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MFHC1

Format: MFHC1 rt, fs MIPS32 Release 2

Purpose:

To copy a word from the high half of an FPU (CP1) general register to a GPR

Description: GPR[rt] ← FPR[fs]63..32

The contents of the high word of FPR fs are loaded into general register rt. This instruction is primarily intended to
support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:
data ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)63..32
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP1

010001

MFH

00011
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word From High Half of Floating Point Register MFHC1



180 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MFHC2

Format: MFHC2 rt, rd MIPS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from the high half of a COP2 general register to a GPR

Description: GPR[rt] ← CP2CPR[Impl]63..32

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← CP2CPR[Impl]63..32
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

MFH

00011
rt Impl

6 5 5 16

Move Word From High Half of Coprocessor 2 Register MFHC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 181

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MFHI

Format: MFHI rd MIPS32

Purpose:

To copy the special purpose HI register to a GPR

Description: GPR[rd] ← HI

The contents of special register HI are loaded into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000

6 10 5 5 6

Move From HI Register MFHI



182 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MFLO

Format: MFLO   rd MIPS32

Purpose:

To copy the special purpose LO register to a GPR

Description: GPR[rd] ← LO

The contents of special register LO are loaded into GPR rd.

Restrictions: None

Operation:
GPR[rd] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFLO

010010

6 10 5 5 6

Move From LO Register MFLO



MIPS32® Architecture For Programmers Volume II, Revision 2.50 183

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOV.fmt

Format: MOV.S fd, fs MIPS32
MOV.D fd, fs MIPS32
MOV.PS fd, fs MIPS64, MIPS32 Release 2

Purpose:

To move an FP value between FPRs

Description: FPR[fd] ← FPR[fs]

The value in FPR fs is placed into FPR fd. The source and destination are values in format fmt. In paired-single for-
mat, both the halves of the pair are copied to fd.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOV.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

MOV

000110

6 5 5 5 5 6

Floating Point Move MOV.fmt



184 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVF

Format: MOVF rd, rs, cc MIPS32

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 0 then GPR[rd] ← GPR[rs]

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

0
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point False MOVF



MIPS32® Architecture For Programmers Volume II, Revision 2.50 185

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVF.fmt

Format: MOVF.S fd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
MOVF.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose:

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 0 then FPR[fd] ← FPR[fs]

If the floating point condition code specified by CC is zero, then the value in FPR fs is placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not zero, then FPR fs is not copied and FPR fd retains its previous value in format fmt. If fd did
not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVF.PS conditionally merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is zero,
and independently merges the upper half of FPR fs into the upper half of FPR fd if condition code CC+1 is zero. The
CC field must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDITABLE and the value of
the operand FPR becomes UNPREDICTABLE.

The result of MOVF.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

0
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point False MOVF.fmt



186 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point False (cont.) MOVF.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 187

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVN

Format: MOVN rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] ≠ 0 then GPR[rd] ← GPR[rs]

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The non-zero value tested here is the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVN

001011

6 5 5 5 5 6

Move Conditional on Not Zero MOVN



188 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVN.fmt

Format: MOVN.S fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32
MOVN.PS fd, fs, rt MIPS64, MIPS32 Release 2

Purpose:

To test a GPR then conditionally move an FP value

Description: if GPR[rt] ≠ 0 then FPR[fd] ← FPR[fs]

If the value in GPR rt is not equal to zero, then the value in FPR fs is placed in FPR fd. The source and destination are
values in format fmt.

If GPR rt contains zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from a load or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOVN.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVN

010011

6 5 5 5 5 6

Floating Point Move Conditional on Not Zero MOVN.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 189

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

if GPR[rt] ≠ 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Not Zero MOVN.fmt



190 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVT

Format: MOVT rd, rs, cc MIPS32

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 1 then GPR[rd] ← GPR[rs]

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rd.

Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

1
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point True MOVT



MIPS32® Architecture For Programmers Volume II, Revision 2.50 191

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVT.fmt

Format: MOVT.S fd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32
MOVT.PS fd, fs, cc MIPS64, MIPS32 Release 2

Purpose:

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 1 then FPR[fd] ← FPR[fs]

If the floating point condition code specified by CC is one, then the value in FPR fs is placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd
did not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes undefined.

MOVT.PS conditionally merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is one,
and independently merges the upper half of FPR fs into the upper half of FPR fd if condition code CC+1 is one. The
CC field should be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

The result of MOVT.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

1
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point True MOVT.fmt



192 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point True MOVT.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 193

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVZ

Format: MOVZ rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] = 0 then GPR[rd] ← GPR[rs]

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The zero value tested here is the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVZ

001010

6 5 5 5 5 6

Move Conditional on Zero MOVZ



194 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MOVZ.fmt

Format: MOVZ.S fd, fs, rt MIPS32
MOVZ.D fd, fs, rt MIPS32
MOVZ.PS fd, fs, rt MIPS64, MIPS32 Release 2

Purpose:

To test a GPR then conditionally move an FP value

Description: if GPR[rt] = 0 then FPR[fd] ← FPR[fs]

If the value in GPR rt is equal to zero then the value in FPR fs is placed in FPR fd. The source and destination are val-
ues in format fmt.

If GPR rt is not zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain a value either in format fmt or previously unused data from a load or move-to operation that could be interpreted
in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOVZ.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVZ

010010

6 5 5 5 5 6

Floating Point Move Conditional on Zero MOVZ.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 195

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

if GPR[rt] = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Zero (cont.) MOVZ.fmt



196 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MSUB

Format: MSUB rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ←  (HI,LO) - (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO.. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUB

000100

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 197

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MSUB.fmt

Format: MSUB.S fd, fr, fs, ft MIPS64
MSUB.D fd, fr, fs, ft MIPS64
MSUB.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To perform a combined multiply-then-subtract of FP values

Description: FPR[fd] ← (FPR[fs] × FPR[ft]) − FPR[fr]

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
subtracted from the product. The subtraction result is calculated to infinite precision, rounded according to the current
rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

MSUB.PS multiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MSUB.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MSUB

101
fmt

6 5 5 5 5 3 3

Floating Point Multiply Subtract MSUB.fmt



198 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Subtract (cont.) MSUB.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 199

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MSUBU

Format: MSUBU rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ←  (HI,LO) - (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO.. The
most significant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arith-
metic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUBU

000101

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUBU



200 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MTC0

Format: MTC0 rt, rd MIPS32
MTC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[0, rd, sel] ← GPR[rt]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and sel.

Operation:

data ← GPR[rt]
CPR[0,rd,sel] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MT

00100
rt rd

0

0000 000
sel

6 5 5 5 8 3

Move to Coprocessor 0 MTC0



MIPS32® Architecture For Programmers Volume II, Revision 2.50 201

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MTC1

Format: MTC1 rt, fs MIPS32

Purpose:

To copy a word from a GPR to an FPU (CP1) general register

Description: FPR[fs] ← GPR[rt]

The low word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data ← GPR[rt]31..0
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPR fs is UNPREDICTABLE for the instruction immediately follow-
ing MTC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MT

00100
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word to Floating Point MTC1



202 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MTC2

Format: MTC2 rt, rd MIPS32
MTC2 rt, rd, sel MIPS32

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a GPR to a COP2 general register

Description: CP2CPR[Impl] ← GPR[rt]

The low word in GPR rt is placed into the low word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ← GPR[rt]
CP2CPR[Impl] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 8 7 0

COP2

010010

MT

00100
rt Impl

6 5 5 16

Move Word to Coprocessor 2 MTC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 203

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MTHC1

Format: MTHC1 rt, fs MIPS32 Release 2

Purpose:

To copy a word from a GPR to the high half of an FPU (CP1) general register

Description: FPR[fs]63..32 ← GPR[rt]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:

newdata ← GPR[rt]olddata ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)31..0
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHC1.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MTH

00111
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word to High Half of Floating Point Register MTHC1



204 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MTHC2

Format: MTHC2 rt, rd MIPS32 Release 2
MTHC2 rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impl]63..32 ← GPR[rt]

The word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← GPR[rt]
CP2CPR[Impl] ← data || CPR[2,rd,sel]31..0

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the MTHC2.
This is because of the semantic definition of MTC2, which is not aware that software will be using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 11 10 0

COP2

010010

MTH

00111
rt Impl

6 5 5 16

Move Word to High Half of Coprocessor 2 Register MTHC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 205

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MTHI

Format: MTHI rs MIPS32

Purpose:

To copy a GPR to the special purpose HI register

Description: HI ← GPR[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either HI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

HI ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001

6 5 15 6

Move to HI Register MTHI



206 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MTLO

Format: MTLO rs MIPS32

Purpose:

To copy a GPR to the special purpose LO register

Description: LO ← GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into either HI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of HI are UNPREDICTABLE. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTLO r6
... # code not containing mfhi
MFHI r3 # this mfhi would get an UNPREDICTABLE value

Operation:

LO ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011

6 5 15 6

Move to LO Register MTLO



MIPS32® Architecture For Programmers Volume II, Revision 2.50 207

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MUL

Format: MUL rd, rs, rt MIPS32

Purpose:

To multiply two words and write the result to a GPR.

Description: GPR[rd] ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The contents of HI and
LO are UNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp <- GPR[rs] * GPR[rt]
GPR[rd] <- temp31..0
HI <- UNPREDICTABLE
LO <- UNPREDICTABLE

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

MUL

000010

6 5 5 5 5 6

Multiply Word to GPR MUL



208 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MUL.fmt

Format: MUL.S fd, fs, ft MIPS32
MUL.D fd, fs, ft MIPS32
MUL.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To multiply FP values

Description: FPR[fd] ← FPR[fs] × FPR[ft]

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated
exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MUL.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) ×fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

MUL

000010

6 5 5 5 5 6

Floating Point Multiply MUL.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 209

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MULT

Format: MULT rs, rt MIPS32

Purpose:

To multiply 32-bit signed integers

Description: (HI, LO) ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the
high-order 32-bit word is splaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← GPR[rs]31..0 × GPR[rt]31..0
LO ← prod31..0
HI ← prod63..32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULT

011000

6 5 5 10 6

Multiply Word MULT



210 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

MULTU

Format: MULTU rs, rt MIPS32

Purpose:

To multiply 32-bit unsigned integers

Description: (HI, LO) ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the
high-order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod← (0 || GPR[rs]31..0) × (0 || GPR[rt]31..0)
LO ← prod31..0
HI ← prod63..32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULTU

011001

6 5 5 10 6

Multiply Unsigned Word MULTU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 211

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

NEG.fmt

Format: NEG.S fd, fs MIPS32
NEG.D fd, fs MIPS32
NEG.PS fd, fs MIPS64, MIPS32 Release 2

Purpose:

To negate an FP value

Description: FPR[fd] ← −FPR[fs]

The value in FPR fs is negated and placed into FPR fd. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and
ORs together any generated exceptional conditions.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

The result of NEG.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

NEG

000111

6 5 5 5 5 6

Floating Point Negate NEG.fmt



212 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

NMADD.fmt

Format: NMADD.S fd, fr, fs, ft MIPS64
NMADD.D fd, fr, fs, ft MIPS64
NMADD.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To negate a combined multiply-then-add of FP values

Description: FPR[fd] ← − ((FPR[fs] × FPR[ft]) + FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt.

NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMADD.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −(vfr +fmt (vfs ×fmt vft)))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMADD

110
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Add NMADD.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 213

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Add (cont.) NMADD.fmt



214 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

NMSUB.fmt

Format: NMSUB.S fd, fr, fs, ft MIPS64
NMSUB.D fd, fr, fs, ft MIPS64
NMSUB.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To negate a combined multiply-then-subtract of FP values

Description: FPR[fd] ← - ((FPR[fs] × FPR[ft]) - FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The value in FPR fr is
subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt.

NMSUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMSUB.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −((vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMSUB

111
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Subtract NMSUB.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 215

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Subtract (cont.) NMSUB.fmt



216 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

NOP

Format: NOP Assembly Idiom

Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
r0, r0, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

0

00000

SLL

000000

6 5 5 5 5 6

No Operation NOP



MIPS32® Architecture For Programmers Volume II, Revision 2.50 217

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

NOR

Format: NOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical NOT OR

Description: GPR[rd] ← GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

NOR

100111

6 5 5 5 5 6

Not Or NOR



218 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

OR

Format: OR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical OR

Description: GPR[rd] ← GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

OR

100101

6 5 5 5 5 6

Or OR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 219

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ORI

Format: ORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical OR with a constant

Description: GPR[rt] ← GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI

001101
rs rt immediate

6 5 5 16

Or Immediate ORI



220 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PLL.PS

Format: PLL.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: FPR[fd] ← lower(FPR[fs]) || lower(FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single ofFPR
ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft, PS)31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PLL

101100

6 5 5 5 5 6

Pair Lower Lower PLL.PS



MIPS32® Architecture For Programmers Volume II, Revision 2.50 221

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PLU.PS

Format: PLU.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: FPR[fd] ← lower(FPR[fs]) || upper(FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR
ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft, PS)63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PLU

101101

6 5 5 5 5 6

Pair Lower Upper PLU.PS



222 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PREF

Format: PREF hint,offset(base) MIPS32

Purpose:

To move data between memory and cache.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed coherency
attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

31 26 25 21 20 16 15 0

PREF

110011
base hint offset

6 5 5 16

Prefetch PREF



MIPS32® Architecture For Programmers Volume II, Revision 2.50 223

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-30 Values of the hint Field for the PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

1 store
Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

4 load_streamed

Use: Prefetched data is expected to be read (not modified) but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it
does not displace data prefetched as “retained.”

5 store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that
it does not displace data prefetched as “retained.”

6 load_retained

Use: Prefetched data is expected to be read (not modified) and
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it
is not displaced by data prefetched as “streamed.”

7 store_retained

Use: Prefetched data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that
it is not displaced by data prefetched as “streamed.”

Prefetch (cont.) PREF



224 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

8-24 Reserved Reserved for future use - not available to implementations.

25 writeback_invalidate
(also known as “nudge”)

Use: Data is no longer expected to be used.

Action: For a writeback cache, schedule a wirteback of any dirty
data. At the completion of the writeback, mark the state of any
cache lines written back as invalid. If the cache line is not dirty, it is
implementation dependent whether the state of the cache line is
marked invalid or left unchanged. If the cache line is locked, no
action is taken.

26-29
Implementation
Dependent Unassigned by the Architecture - available for

implementation-dependent use.

30
PrepareForStore

Use: Prepare the cache for writing an entire line, without the
overhead involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the
reference misses in the cache, a line is selected for replacement, any
valid and dirty victim is written back to memory, the entire line is
filled with zero data, and the state of the line is marked as valid and
dirty.

Programming Note: Because the cache line is filled with zero data
on a cache miss, software must not assume that this action, in and
of itself, can be used as a fast bzero-type function.

31
Implementation
Dependent Unassigned by the Architecture - available for

implementation-dependent use.

Table 3-30 Values of the hint Field for the PREF Instruction



MIPS32® Architecture For Programmers Volume II, Revision 2.50 225

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have
high-reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

Prefetch (cont.) PREF



226 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PREFX

Format: PREFX hint, index(base) MIPS64
MIPS32 Release 2

Purpose:

To move data between memory and cache.

Description: prefetch_memory[GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.

Restrictions:

Operation:

vAddr ← GPR[base] + GPR[index]
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Also refer to the corresponding section in the PREF instruction description.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index hint

0

00000

PREFX

001111

6 5 5 5 5 6

Prefetch Indexed PREFX



MIPS32® Architecture For Programmers Volume II, Revision 2.50 227

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PUL.PS

Format: PUL.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: FPR[fd] ← upper(FPR[fs]) || lower(FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of
FPR ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)63..32 || ValueFPR(ft, PS)31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PUL

101110

6 5 5 5 5 6

Pair Upper Lower PUL.PS



228 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

PUU.PS

Format: PUU.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: FPR[fd] ← upper(FPR[fs]) || upper(FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of
FPR ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)63..32 || ValueFPR(ft, PS)63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PUU

101111

6 5 5 5 5 6

Pair Upper Upper PUU.PS



MIPS32® Architecture For Programmers Volume II, Revision 2.50 229

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

RDHWR

Format: RDHWR rt,rd MIPS32 Release 2

Purpose:

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.

Description: GPR[rt] ← HWR[rd]

If access is allowed to the specified hardware register, the contents of the register specified by rd is loaded into gen-
eral register rt. Access control for each register is selected by the bits in the coprocessor 0 HWREna register.

The available hardware registers, and the encoding of the rd field for each, are shown in Table 3-31.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

0111 11

0

00 000
rt rd

0

000 00

RDHWR

11 1011

6 5 5 5 2 3 6

Table 3-31 Hardware Register List

Register Number
(rd Value)

Register
Name Contents

0 CPUNum Number of the CPU on which the program is currently running.
This comes directly from the coprocessor 0 EBaseCPUNum field.

1 SYNCI_Step Address step size to be used with the SYNCI instruction. See that
instruction’s description for the use of this value.

2 CC High-resolution cycle counter. This comes directly from the
coprocessor 0 Count register.

3 CCRes

Resolution of the CC register. This value denotes the number of
cycles between update of the register. For example:

4-28 Reserved for future architectural use. Access results in a Reserved
Instruction Exception.

29 Reserved for future use by a MIPS ABI extension. Access results in
a Reserved Instruction Exception

30-31

These registers are reserved for implementation-dependent use. If
they are implemented, the corresponding bits in the HWREna
register control access. If they are not implemented, access results
in a Reserved Instruction Exception.

Read Hardware Register RDHWR

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle

etc.



230 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If access is not allowed, a Reserved Instruction Exception is signaled.

Operation:
case rd

0x00: temp ← EBaseCPUNum
0x01: temp ← SYNCI_StepSize()
0x02: temp ← Count

0x03: temp ← CountResolution()
0x30: temp ← Implementation-Dependent-Value
0x31: temp ← Implementation-Dependent-Value

otherwise: SignalException(ReservedInstruction)
endcase
GPR[rt] ← temp

Exceptions:

Reserved Instruction

Read Hardware Register, cont. RDHWR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 231

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

RDPGPR

Format: RDPGPR rd, rt MIPS32 Release 2

Purpose:

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rd] ← SGPR[SRSCtlPSS, rt]

The contents of the shadow GPR register specified by SRSCtlPSS (signifying the previous shadow set number) and rt

(specifying the register number within that set) is moved to the current GPR rd.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] ← SGPR[SRSCtlPSS, rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP0
0100 00

RDPGPR
01 010 rt rd 0

000 0000 0000

6 5 5 5 11

Read GPR from Previous Shadow Set RDPGPR



232 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

RECIP.fmt

Format: RECIP.S   fd, fs MIPS64, MIPS32 Release 2
RECIP.D   fd, fs MIPS64, MIPS32 Release 2

Purpose:

To approximate the reciprocal of an FP value (quickly)

Description: FPR[fd] ← 1.0 / FPR[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR fd. The operand and result are values in
format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of RECIP.D is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RECIP

010101

6 5 5 5 5 6

Reciprocal Approximation RECIP.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 233

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

Reciprocal Approximation (cont.) RECIP.fmt



234 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ROTR

Format: ROTR rd, rt, sa SmartMIPS Crypto, MIPS32 Release 2

Purpose:

To execute a logical right-rotate of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] ↔(right) sa

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by sa.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← sa
temp ← GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd]← temp

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL

000000
0000 R

1 rt rd sa
SRL

000010

6 4 1 5 5 5 6

Rotate Word Right ROTR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 235

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ROTRV

Format: ROTRV rd, rt, rs SmartMIPS Crypto, MIPS32 Release 2

Purpose:

To execute a logical right-rotate of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] ↔(right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← GPR[rs]4..0
temp ← GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd]← temp

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL

000000
rs rt rd 0000 R

1

SRLV

000110

6 5 5 5 4 1 6

Rotate Word Right Variable ROTRV



236 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ROUND.L.fmt

Format: ROUND.L.S   fd, fs MIPS64, MIPS32 Release 2
ROUND.L.D   fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to near-
est/even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.L

001000

6 5 5 5 5 6

Floating Point Round to Long Fixed Point ROUND.L.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 237

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Long Fixed Point (cont.) ROUND.L.fmt



238 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

ROUND.W.fmt

Format: ROUND.W.S   fd, fs MIPS32
ROUND.W.D   fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.W

001100

6 5 5 5 5 6

Floating Point Round to Word Fixed Point ROUND.W.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 239

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Word Fixed Point  (cont). ROUND.W.fmt



240 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

RSQRT.fmt

Format: RSQRT.S   fd, fs MIPS64, MIPS32 Release 2
RSQRT.D   fd, fs MIPS64, MIPS32 Release 2

Purpose:

To approximate the reciprocal of the square root of an FP value (quickly)

Description: FPR[fd] ← 1.0 / sqrt(FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR fd. The operand
and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of RSQRT.D is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RSQRT

010110

6 5 5 5 5 6

Reciprocal Square Root Approximation RSQRT.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 241

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Reciprocal Square Root Approximation (cont.) RSQRT.fmt



242 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SB

Format: SB rt, offset(base) MIPS32

Purpose:

To store a byte to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
bytesel ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

SB

101000
base rt offset

6 5 5 16

Store Byte SB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 243

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SC

Format: SC rt, offset(base) MIPS32

Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1 else

GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it
is at least one word and at most the minimum page size.

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for
instruction words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

31 26 25 21 20 16 15 0

SC

111000
base rt offset

6 5 5 16

Store Conditional Word SC



244 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made
with a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
dataword← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt]← 031 || LLbit

Store Conditional Word (cont.) SC



MIPS32® Architecture For Programmers Volume II, Revision 2.50 245

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Store Conditional Word (cont.) SC



246 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SDBBP

Format: SDBBP code EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executedthe exception is a Debug Mode Exception, which sets the
DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug exception
handler, and is retrieved by the debug exception handler only by loading the contents of the memory word containing
the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

31 26 25 6 5 0

SPECIAL2

011100
code

SDBBP

111111

6 20 6

Software Debug Breakpoint SDBBP



MIPS32® Architecture For Programmers Volume II, Revision 2.50 247

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SDC1

Format: SDC1 ft, offset(base) MIPS32

Purpose:

To store a doubleword from an FPR to memory

Description: memory[GPR[base] + offset] ←FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)paddr ← paddr xor
((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory(CCA, WORD, datadoubleword31..0, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
StoreMemory(CCA, WORD, datadoubleword63..32, pAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC1

111101
base ft offset

6 5 5 16

Store Doubleword from Floating Point SDC1



248 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SDC2

Format: SDC2 rt, offset(base) MIPS32

Purpose:

To store a doubleword from a Coprocessor 2 register to memory

Description: memory[GPR[base] + offset] ← CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
lsw ← CPR[2,rt,0]
msw ← CPR[2,rt+1,0]
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory(CCA, WORD, lsw, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
StoreMemory(CCA, WORD, msw, pAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC2

111110
base rt offset

6 5 5 16

Store Doubleword from Coprocessor 2 SDC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 249

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SDXC1

Format: SDXC1 fs, index(base) MIPS64
MIPS32 Release 2

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ← FPR[fs]

The 64-bit doubleword in FPR fs is stored in memory at the location specified by the aligned effective address. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)paddr ← paddr xor
((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory(CCA, WORD, datadoubleword31..0, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
StoreMemory(CCA, WORD, datadoubleword63..32, pAddr, vAddr+4, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction, Watch.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SDXC1

001001

6 5 5 5 5 6

Store Doubleword Indexed from Floating Point SDXC1



250 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SEB

Format: seb rd, rt MIPS32 Release 2

Purpose:

To sign-extend the least significant byte of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SignExtend(GPR[rt]7..0)

The least significant byte from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
GPR[rd] ←sign_extend(GPR[rt]7..0)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equivalent
instructions already in the instruction set. The following table shows the instructions providing the equivalent func-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111

0

00000
rt rd

SEB

10000

BSHFL

100000

6 5 5 5 5 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

Sign-Extend Byte SEB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 251

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SEH

Format: seh rd, rt MIPS32 Release 2

Purpose:

To sign-extend the least significant halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SignExtend(GPR[rt]15..0)

The least significant halfword from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
GPR[rd] ←sign_extend(GPR[rt]15..0)

Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111

0

00000
rt rd

SEH

11000

BSHFL

100000

6 5 5 5 5 6

Sign-Extend Halfword SEH



252 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equivalent
instructions already in the instruction set. The following table shows the instructions providing the equivalent func-
tions.

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

Sign-Extend Halfword, cont. SEH



MIPS32® Architecture For Programmers Volume II, Revision 2.50 253

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SH

Format: SH rt, offset(base) MIPS32

Purpose:

To store a halfword to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr11..0 xor (ReverseEndian || 0))
bytesel← vAddr11..0 xor (BigEndianCPU || 0)
dataword← GPR[rt]31–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SH

101001
base rt offset

6 5 5 16

Store Halfword SH



254 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SLL

Format: SLL rd, rt, sa MIPS32

Purpose:

To left-shift a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:
s ← sa
temp ← GPR[rt](31-s)..0 || 0

s

GPR[rd]← temp

Exceptions:

None

Programming Notes:

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SLL

000000

6 5 5 5 5 6

Shift Word Left Logical SLL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 255

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SLLV

Format: SLLV rd, rt, rs MIPS32

Purpose:

To left-shift a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the result
word is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions: None

Operation:
s ← GPR[rs]4..0
temp ← GPR[rt](31-s)..0 || 0

s

GPR[rd]← temp

Exceptions: None

Programming Notes:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLLV

000100

6 5 5 5 5 6

Shift Word Left Logical Variable SLLV



256 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SLT

Format: SLT rd, rs, rt MIPS32

Purpose:

To record the result of a less-than comparison

Description: GPR[rd] ← (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLT

101010

6 5 5 5 5 6

Set on Less Than SLT



MIPS32® Architecture For Programmers Volume II, Revision 2.50 257

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SLTI

Format: SLTI rt, rs, immediate MIPS32

Purpose:

To record the result of a less-than comparison with a constant

Description: GPR[rt] ← (GPR[rs] < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the Boolean result of
the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rt] ← 0GPRLEN-1|| 1

else
GPR[rt] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI

001010
rs rt immediate

6 5 5 16

Set on Less Than Immediate SLTI



258 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SLTIU

Format: SLTIU rt, rs, immediate MIPS32

Purpose:

To record the result of an unsigned less-than comparison with a constant

Description: GPR[rt] ← (GPR[rs] < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and record the Boolean
result of the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rt] ← 0GPRLEN-1 || 1

else
GPR[rt] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU

001011
rs rt immediate

6 5 5 16

Set on Less Than Immediate Unsigned SLTIU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 259

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SLTU

Format: SLTU rd, rs, rt MIPS32

Purpose:

To record the result of an unsigned less-than comparison

Description: GPR[rd] ← (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLTU

101011

6 5 5 5 5 6

Set on Less Than Unsigned SLTU



260 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SQRT.fmt

Format: SQRT.S fd, fs MIPS32
SQRT.D fd, fs MIPS32

Purpose:

To compute the square root of an FP value

Description: FPR[fd] ← SQRT(FPR[fs])

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR fd. The operand and result are values in format fmt.

If the value in FPR fs corresponds to – 0, the result is – 0.

Restrictions:

If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

SQRT

000100

6 5 5 5 5 6

Floating Point Square Root SQRT.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 261

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SRA

Format: SRA rd, rt, sa MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] >> sa      (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s ← sa
temp ← (GPR[rt]31)

s || GPR[rt]31..s
GPR[rd]← temp

Exceptions: None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRA

000011

6 5 5 5 5 6

Shift Word Right Arithmetic SRA



262 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SRAV

Format: SRAV rd, rt, rs MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> rs      (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ← GPR[rs]4..0
temp ← (GPR[rt]31)

s || GPR[rt]31..s
GPR[rd]← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRAV

000111

6 5 5 5 5 6

Shift Word Right Arithmetic Variable SRAV



MIPS32® Architecture For Programmers Volume II, Revision 2.50 263

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SRL

Format: SRL rd, rt, sa MIPS32

Purpose:

To execute a logical right-shift of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] >> sa      (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s ← sa
temp ← 0s || GPR[rt]31..s
GPR[rd]← temp

Exceptions:

None

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL

000000
0000 R

0 rt rd sa
SRL

000010

6 4 1 5 5 5 6

Shift Word Right Logical SRL



264 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SRLV

Format: SRLV rd, rt, rs MIPS32

Purpose:

To execute a logical right-shift of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ← GPR[rs]4..0
temp ← 0s || GPR[rt]31..s
GPR[rd]← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL

000000
rs rt rd 0000 R

0

SRLV

000110

6 5 5 5 4 1 6

Shift Word Right Logical Variable SRLV



MIPS32® Architecture For Programmers Volume II, Revision 2.50 265

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SSNOP

Format: SSNOP MIPS32

Purpose:

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ERET, one
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

Based on the normal issues rules of the processor, the MTC0 issues in cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

1

00001

SLL

000000

6 5 5 5 5 6

Superscalar No Operation SSNOP



266 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SUB

Format: SUB rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers. If overflow occurs, then trap

Description: GPR[rd] ← GPR[rs] - GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) − (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp31..0
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUB

100010

6 5 5 5 5 6

Subtract Word SUB



MIPS32® Architecture For Programmers Volume II, Revision 2.50 267

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SUB.fmt

 [c

Format: SUB.S fd, fs, ft MIPS32
SUB.D fd, fs, ft MIPS32
SUB.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose:

To subtract FP values

Description: FPR[fd] ← FPR[fs] - FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPR fs and FPR ft independently, and ORs together any gen-
erated exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of SUB.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) –fmt ValueFPR(ft, fmt))

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

SUB

000001

6 5 5 5 5 6

Floating Point Subtract SUB.fmt



268 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SUBU

Format: SUBU rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers

Description: GPR[rd] ← GPR[rs] - GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] - GPR[rt]
GPR[rd]← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUBU

100011

6 5 5 5 5 6

Subtract Unsigned Word SUBU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 269

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SUXC1

Format: SUXC1 fs, index(base) MIPS64, MIPS32 Release 2

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(GPR[base] + GPR[index])PSIZE-1..3] ← FPR[fs]

The contents of the 64-bit doubleword in FPR fs is stored at the memory location specified by the effective address.
The contents of GPR index and GPR base are added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index])63..3  || 0
3

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)paddr ← paddr xor
((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory(CCA, WORD, datadoubleword31..0, pAddr, vAddr, DATA)
paddr ← paddr xor 0b100
StoreMemory(CCA, WORD, datadoubleword63..32, pAddr, vAddr+4, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SUXC1

001101

6 5 5 5 5 6

Store Doubleword Indexed Unaligned from Floating Point SUXC1



270 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SW

Format: SW rt, offset(base) MIPS32

Purpose:

To store a word to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
dataword← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Store Word SW



MIPS32® Architecture For Programmers Volume II, Revision 2.50 271

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SWC1

Format: SWC1 ft, offset(base) MIPS32

Purpose:

To store a word from an FPR to memory

Description: memory[GPR[base] + offset] ← FPR[ft]

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC1

111001
base ft offset

6 5 5 16

Store Word from Floating Point SWC1



272 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SWC2

Format: SWC2 rt, offset(base) MIPS32

Purpose:

To store a word from a COP2 register to memory

Description: memory[GPR[base] + offset] ← CPR[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← CPR[2,rt,0]
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC2

111010
base rt offset

6 5 5 16

Store Word from Coprocessor 2 SWC2



MIPS32® Architecture For Programmers Volume II, Revision 2.50 273

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SWL

Format: SWL rt, offset(base) MIPS32

Purpose:

To store the most-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ← GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same number of the
most-significant (left) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned
word.

Figure 3-9 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

31 26 25 21 20 16 15 0

SWL

101010
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most      — significance —       least

0 1 2 3 4 5 6 7 8 ... Memory:  Initial contents

GPR 24 E F G H

0 1 E F 4 5 6 ... After executing SWL $24,2($0)

0 1 E F G H 6 ... Then after SWR $24,5($0)

Store Word Left SWL



274 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Figure 3-10 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ←  pAddrPSIZE-1..2 || (pAddr1..0  xor  ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword← 024–8*byte || GPR[rt]31..24–8*byte
StoreMemory(CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error , Watch

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian 64-bit register

i j k l offset  (vAddr1..0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left (cont.) SWL



MIPS32® Architecture For Programmers Volume II, Revision 2.50 275

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SWR

Format: SWR rt, offset(base) MIPS32

Purpose:

To store the least-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ← GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same number of the
least-significant (right) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Figure 3-11 Unaligned Word Store Using SWR and SWL

31 26 25 21 20 16 15 0

SWR

101110
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

least — significance — least

0 1 2 3 4 5 6 7 8 ... Memory:  Initial contents

GPR 24 E F G H

0 1 2 3 G H 6 ... After executing SWR $24,5($0)

0 1 E F G H 6 ... Then after SWL $24,2($0)

Store Word Right SWR



276 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

Figure 3-12 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ←  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword← GPR[rt]31–8*byte || 0
8*byte

StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ← big-endian 64-bit register

i j k l offset  (vAddr1..0) A B C D E F G H

3 2 1 0 ← little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian byte
ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right (cont.) SWR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 277

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SWXC1

Format: SWXC1 fs, index(base) MIPS64
MIPS32 Release 2

Purpose:

To store a word from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ← FPR[fs]

The low 32-bit word from FPR fs is stored in memory at the location specified by the aligned effective address. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SWXC1

001000

6 5 5 5 5 6

Store Word Indexed from Floating Point SWXC1



278 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SYNC

Format: SYNC (stype = 0 implied) MIPS32

Purpose:

To order loads and stores.

Description:

Simple Description:

• SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the SYNC
must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is visible to
every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release 2 of
the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC is required on some implementations on entry to and exit from Debug Mode to guarantee that
memory affects are handled correctly.

Detailed Description:

• When the stype field has a value of zero, every synchronizable load and store that occurs in the instruction stream
before the SYNC instruction must be globally performed before any synchronizable load or store that occurs after the
SYNC can be performed, with respect to any other processor or coherent I/O module.

• SYNC does not guarantee the order in which instruction fetches are performed. The stype values 1-31 are reserved
for future extensions to the architecture. A value of zero will always be defined such that it performs all defined
synchronization operations. Non-zero values may be defined to remove some synchronization operations. As such,
software should never use a non-zero value of the stype field, as this may inadvertently cause future failures if
non-zero values remove synchronization operations.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000 0000 0
stype

SYNC

001111

6 15 5 6

Synchronize Shared Memory SYNC



MIPS32® Architecture For Programmers Volume II, Revision 2.50 279

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of a load on processor A has been determined with respect to processor or coherent I/O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent I/O module: A coherent I/O module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access type of cached coherent.

Synchronize Shared Memory (cont.) SYNC



280 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:
SyncOperation(stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of any
load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing pro-
cessor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is UNPREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

Synchronize Shared Memory (cont.) SYNC



MIPS32® Architecture For Programmers Volume II, Revision 2.50 281

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined. The effect of SYNC on reads or writes to memory caused by privileged implementation-specific instructions,
such as CACHE, also is not defined.

# Processor A (writer)
# Conditions at entry:
# The value 0 has been stored in FLAG and that value is observable by B
SW R1, DATA # change shared DATA value
LI R2, 1
SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

# Processor B (reader)
LI R2, 1

1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

Prefetch operations have no effect detectable by User-mode programs, so ordering the effects of prefetch operations is
not meaningful.

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared data is valid.

Synchronize Shared Memory (cont.) SYNC



282 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SYNCI

Format: SYNCI offset(base) MIPS32 Release 2

Purpose:

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a byproduct of this instruc-
tion. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.

A Cache Error exception may occur as a byproduct of this instruction. For example, if a writeback operation detects a
cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. Similarly,
a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.

Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were prevsiously locked with the CACHE instruction. If cor-
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts only on the current processor. It doesn’t not affect the caches on other processors in a
multi-processor system, except as required to perform the operation on the current processor (as might be the case if
multiple processors share an L2 or L3 cache).

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
sequence is not followed.

31 26 25 21 20 16 15 0

REGIMM

000001
base

SYNCI

11111
offset

6 5 5 16

Synchronize Caches to Make Instruction Writes Effective SYNCI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 283

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

vaddr ← GPR[base] + sign_extend(offset)
SynchronizeCacheLines(vaddr)/* Operate on all caches */

Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception
TLB Invalid Exception
Address Error Exception
Cache Error Exception
Bus Error Exception

Synchronize Caches to Make Instruction Writes Effective, cont. SYNCI



284 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after the
new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be replaced
with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the
JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruc-
tion is required between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*
 * This routine makes changes to the instruction stream effective to the
 * hardware.  It should be called after the instruction stream is written.
 * On return, the new instructions are effective.
 *
 * Inputs:
 * a0 = Start address of new instruction stream
 * a1 = Size, in bytes, of new instruction stream
 */

addu a1, a0, a1 /* Calculate end address + 1 */
rdhwr v0, HW_SYNCI_Step /* Get step size for SYNCI from new */

/*   Release 2 instruction */
beq v0, zero, 20f /* If no caches require synchronization, */
nop /*   branch around */

10: synci 0(a0) /* Synchronize all caches around address */
sltu v1, a0, a1 /* Compare current with end address */
bne v1, zero, 10b /* Branch if more to do */
addu a0, a0, v0 /* Add step size in delay slot */
sync /* Clear memory hazards */

20: jr.hb ra /* Return, clearing instruction hazards */
nop

Synchronize Caches to Make Instruction Writes Effective, cont. SYNCI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 285

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

SYSCALL

Format: SYSCALL MIPS32

Purpose:

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 6 5 0

SPECIAL

000000
code

SYSCALL

001100

6 20 6

System Call SYSCALL



286 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TEQ

Format: TEQ rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TEQ

110100

6 5 5 10 6

Trap if Equal TEQ



MIPS32® Architecture For Programmers Volume II, Revision 2.50 287

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TEQI

Format: TEQI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] = immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is equal to immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TEQI

01100
immediate

6 5 5 16

Trap if Equal Immediate TEQI



288 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TGE

Format: TGE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≥ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGE

110000

6 5 5 10 6

Trap if Greater or Equal TGE



MIPS32® Architecture For Programmers Volume II, Revision 2.50 289

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TGEI

Format: TGEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is greater than or equal
to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEI

01000
immediate

6 5 5 16

Trap if Greater or Equal Immediate TGEI



290 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TGEIU

Format: TGEIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rs is greater
than or equal to immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEIU

01001
immediate

6 5 5 16

Trap if Greater or Equal Immediate Unsigned TGEIU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 291

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TGEU

Format: TGEU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≥ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is greater than or equal to GPR rt, then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGEU

110001

6 5 5 10 6

Trap if Greater or Equal Unsigned TGEU



292 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLBP

Format: TLBP MIPS32

Purpose:

To find a matching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i]VPN2 and not (TLB[i]Mask)) =

(EntryHiVPN2 and not (TLB[i]Mask))) and
((TLB[i]G = 1) or (TLB[i]ASID = EntryHiASID))then
Index ← i

endif
endfor

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBP

001000

6 1 19 6

Probe TLB for Matching Entry TLBP



MIPS32® Architecture For Programmers Volume II, Revision 2.50 293

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLBR

Format: TLBR MIPS32

Purpose:

To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed to
by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB matches
are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches only on
a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. Note that
the value written to the EntryHi, EntryLo0, and EntryLo1 registers may be different from that originally written to the
TLB via these registers in that:

• The value returned in the VPN2 field of the EntryHi register may havethose bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

• The value returned in the PFN field of the EntryLo0 and EntryLo1 registers may havethose bits set to zero
corresponding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed after a TLB entry is written and then read.

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBR

000001

6 1 19 6

Read Indexed TLB Entry TLBR



294 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i]Mask
EntryHi ←

(TLB[i]VPN2 and not TLB[i]Mask) || # Masking implementation dependent
05 || TLB[i]ASID

EntryLo1 ← 02 ||
(TLB[i]PFN1 and not TLB[i]Mask) || # Masking mplementation dependent
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 02 ||
(TLB[i]PFN0 and not TLB[i]Mask) || # Masking mplementation dependent
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

Exceptions:

Coprocessor Unusable

Machine Check

Read Indexed TLB Entry TLBR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 295

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLBWI

Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLo0, EntryLo1, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWI. In
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1
registers.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWI

000010

6 1 19 6

Write Indexed TLB Entry TLBWI



296 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Index
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

Machine Check

Write Indexed TLB Entry TLBWI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 297

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLBWR

Format: TLBWR MIPS32

Purpose:

To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR. In
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1
registers.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWR

000110

6 1 19 6

Write Random TLB Entry TLBWR



298 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Random
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

Machine Check

Write Random TLB Entry TLBWR



MIPS32® Architecture For Programmers Volume II, Revision 2.50 299

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLT

Format: TLT rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is less than GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLT

110010

6 5 5 10 6

Trap if Less Than TLT



300 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLTI

Format: TLTI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is less than immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTI

01010
immediate

6 5 5 16

Trap if Less Than Immediate TLTI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 301

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLTIU

Format: TLTIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rs is less than
immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTIU

01011
immediate

6 5 5 16

Trap if Less Than Immediate Unsigned TLTIU



302 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TLTU

Format: TLTU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLTU

110011

6 5 5 10 6

Trap if Less Than Unsigned TLTU



MIPS32® Architecture For Programmers Volume II, Revision 2.50 303

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TNE

Format: TNE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≠ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is not equal to GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TNE

110110

6 5 5 10 6

Trap if Not Equal TNE



304 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TNEI

Format: TNEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≠ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is not equal to imme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TNEI

01110
immediate

6 5 5 16

Trap if Not Equal Immediate TNEI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 305

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TRUNC.L.fmt

Format: TRUNC.L.S fd, fs MIPS64, MIPS32 Release 2
TRUNC.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263-1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.L

001001

6 5 5 5 5 6

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt



306 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact

Floating Point Truncate to Long Fixed Point (cont.) TRUNC.L.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 307

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

TRUNC.W.fmt

Format: TRUNC.W.S fd, fs MIPS32
TRUNC.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.W

001101

6 5 5 5 5 6

Floating Point Truncate to Word Fixed Point TRUNC.W.fmt



308 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Overflow, Unimplemented Operation

Floating Point Truncate to Word Fixed Point (cont.) TRUNC.W.fmt



MIPS32® Architecture For Programmers Volume II, Revision 2.50 309

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

WAIT

Format: WAIT MIPS32

Purpose:

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usually involving a lower power mode.
Software may use bits 24:6 of the instruction to communicate additional information to the processor, and the proces-
sor may use this information as control for the lower power mode. A value of zero for bits 24:6 is the default and must
be valid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request
occurs, and execution continues with the instruction following the WAIT instruction. It is implementation-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart.The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1
Implementation-Dependent Code

WAIT

100000

6 1 19 6

Enter Standby Mode WAIT



310 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Operation:

I: Enter implementation dependent lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

Enter Standby Mode (cont.) WAIT



MIPS32® Architecture For Programmers Volume II, Revision 2.50 311

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

WRPGPR

Format: WRPGPR rd, rt MIPS32 Release 2

Purpose:

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlPSS, rd] ← GPR[rt]

The contents of the current GPR rt is moved to the shadow GPR register specified by SRSCtlPSS (signifying the pre-
vious shadow set number) and rd (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

SGPR[SRSCtlPSS, rd] ← GPR[rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP0
0100 00

WRPGPR
01 110 rt rd 0

000 0000 0000

6 5 5 5 11

Write to GPR in Previous Shadow Set WRPGPR



312 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

WSBH

Format: wsbh rd, rt MIPS32 Release 2

Purpose:

To swap the bytes within each halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SwapBytesWithinHalfwords(GPR[rt])

Within each halfword of GPR rt the bytes are swapped, and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
GPR[rd] ←GPR[rt]23..16 || GPR[rt]31..24 || GPR[rt]7..0 || GPR[rt]15..8

Exceptions:

Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of a word value can be converted using the following sequence:

lw t0, 0(a1) /* Read word value */
wsbh t0, t0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
wsbh t0, t0 /* Convert endiannes of the halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111

0

00000
rt rd

WSBH

00010

BSHFL

100000

6 5 5 5 5 6

Word Swap Bytes Within Halfwords WSBH



MIPS32® Architecture For Programmers Volume II, Revision 2.50 313

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

XOR

Format: XOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical Exclusive OR

Description: GPR[rd] ← GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into
GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

XOR

100110

6 5 5 5 5 6

Exclusive OR XOR



314 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

XORI

Format: XORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: GPR[rt] ← GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI

001110
rs rt immediate

6 5 5 16

Exclusive OR Immediate XORI



MIPS32® Architecture For Programmers Volume II, Revision 2.50 315

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Instruction Bit Encodings

A.1 Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book in italics.

When encoding an instruction, the primary opcode field is encoded first. Most opcode values completely specify an
instruction that has an immediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by values in other fields. For instance, opcode REGIMM specifies the immediate instruction class,
which includes conditional branch and trap immediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32® ISA.

Figure A-1 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the opcode
field are listed in the leftmost columns of the table. Bits 28..26 of the opcode field are listed along the topmost rows of
the table. Both decimal and binary values are given, with the first three bits designating the row, and the last three bits
designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For instance,
the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Similarly, the
opcode value for EX2 is 64 (decimal), or 110100 (binary).



316 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

Tables A-2 through A-20 describe the encoding used for the MIPS32 ISA. Table A-1 describes the meaning of the
symbols used in the tables.

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β
Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level or a new revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

∇

Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an
instruction must cause a Reserved Instruction Exception (non-coprocessor encodings or
coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is not
allowed).

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

opcode  bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 EX1

4 100

5 101

6 110 EX2

7 111

Decimal encoding of
opcode (28..26)

Binary encoding of
opcode (28..26)

Decimal encoding of
opcode (31..29)

Binary encoding of
opcode (31..29)

Figure A-1 Sample Bit Encoding Table



A.2 Instruction Bit Encoding Tables

MIPS32® Architecture For Programmers Volume II, Revision 2.50 317

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

θ

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2
encodings or coprocessor instruction encodings for a coprocessor to which access is allowed) or
a Coprocessor Unusable Exception (coprocessor instruction encodings for a coprocessor to which
access is not allowed).

σ
Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

⊕
Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A-2 MIPS32 Encoding of the Opcode Field

opcode  bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL δ REGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 δ COP1 δ COP2 θδ COP1X1 δ

1. In Release 1 of the Architecture, the COP1X opcode was called COP3, and was available as another user-available coprocessor. In
Release 2 of the Architecture, a full 64-bit floating point unit is available with 32-bit CPUs, and the COP1X opcode is reserved for
that purpose on all Release 2 CPUs. 32-bit implementations of Release 1 of the architecture are strongly discouraged from using
this opcode for a user-available coprocessor as doing so will limit the potential for an upgrade path to a 64-bit floating point unit.

BEQL φ BNEL φ BLEZL φ BGTZL φ

3 011 β β β β SPECIAL2 δ JALX ε ε SPECIAL32

δ⊕

2. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved
Instruction Exception for this opcode.

4 100 LB LH LWL LW LBU LHU LWR β
5 101 SB SH SWL SW β β SWR  CACHE

6 110 LL LWC1 LWC2 θ PREF β LDC1 LDC2 θ β
7 111 SC SWC1 SWC2 θ * β SDC1 SDC2 θ β

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning



318 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

Table A-3 MIPS32 SPECIAL Opcode Encoding of Function Field

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL1

1. Specific encodings of the rt, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP and EHB functions.

MOVCI δ SRL δ SRA SLLV * SRLV δ SRAV

1 001 JR2

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

JALR2 MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO β * β β
3 011 MULT MULTU DIV DIVU β β β β
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU β β β β
6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 β * β β β * β β

Table A-4 MIPS32 REGIMM Encoding of rt Field

rt  bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ * * * *

3 11 * * * * * * * SYNCI ⊕

Table A-5 MIPS32 SPECIAL2 Encoding of Function Field

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL θ MSUB MSUBU θ θ
1 001 θ θ θ θ θ θ θ θ
2 010 θ θ θ θ θ θ θ θ
3 011 θ θ θ θ θ θ θ θ
4 100 CLZ CLO θ θ β β θ θ
5 101 θ θ θ θ θ θ θ θ
6 110 θ θ θ θ θ θ θ θ
7 111 θ θ θ θ θ θ θ SDBBP σ

Table A-6 MIPS32 SPECIAL31 Encoding of Function Field for Release 2 of the Architecture

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT ⊕ β β β INS ⊕ β β β
1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 BSHFL ⊕δ * * * β * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * RDHWR ⊕ * * * *



A.2 Instruction Bit Encoding Tables

MIPS32® Architecture For Programmers Volume II, Revision 2.50 319

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

1. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved
Instruction Exception for this opcode and all function field values shown above.

Table A-7 MIPS32 MOVCI Encoding of tf Bit

tf  bit 16

0 1

MOVF MOVT

Table A-8 MIPS321 SRL Encoding of Shift/Rotate

1. Release 2 of the Architecture added the
ROTR instruction. Implementations
of Release 1 of the Architecture ig-
nored bit 21 and treated the instruc-
tion as an SRL

R  bit 21

0 1

SRL ROTR

Table A-9 MIPS321 SRLV Encoding of Shift/Rotate

1. Release 2 of the Architecture added the
ROTRV instruction. Implementa-
tions of Release 1 of the Architecture
ignored bit 6 and treated the instruc-
tion as an SRLV

R  bit 6

0 1

SRLV ROTRV

Table A-10 MIPS32 BSHFL Encoding of sa Field1

1. The sa field is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are reserved for future use
by MIPS Technologies and may or may not cause a Reserved Instruction exception.

sa  bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 WSBH

1 01

2 10 SEB

3 11 SEH

Table A-11 MIPS32 COP0 Encoding of rs Field

rs  bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 β * * MTC0 β * *

1 01 * * RDPGPR ⊕ MFMC01 δ⊕ * * WRPGPR ⊕ *

2 10
C0 δ

3 11



320 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

1. Release 2 of the Architecture added the MFMC0 function, which is further decoded as the DI and EI instructions.

Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET σ
4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table A-13 MIPS32 COP1 Encoding of rs Field

rs  bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 β CFC1 MFHC1 ⊕ MTC1 β CTC1 MTHC1 ⊕
1 01 BC1 δ BC1ANY2 δε∇ BC1ANY4 δε∇ * * * * *

2 10 S δ D δ * * W δ L δ PS δ *

3 11 * * * * * * * *

Table A-14 MIPS32 COP1 Encoding of Function Field When rs=S

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇
4 100 * CVT.D * * CVT.W CVT.L ∇ CVT.PS∇ *

5 101 * * * * * * * *

6 110 C.F
CABS.F ε∇

C.UN
CABS.UN ε∇

C.EQ
CABS.EQ ε∇

C.UEQ
CABS.UEQ ε∇

C.OLT
CABS.OLT ε∇

C.ULT
CABS.ULT ε∇

C.OLE
CABS.OLE ε∇

C.ULE
CABS.ULE ε∇

7 111 C.SF
CABS.SF ε∇

C.NGLE
CABS.NGLE ε∇

C.SEQ
CABS.SEQ ε∇

C.NGL
CABS.NGL ε∇

C.LT
CABS.LT ε∇

C.NGE
CABS.NGE ε∇

C.LE
CABS.LE ε∇

C.NGT
CABS.NGT ε∇



A.2 Instruction Bit Encoding Tables

MIPS32® Architecture For Programmers Volume II, Revision 2.50 321

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Table A-15 MIPS32 COP1 Encoding of Function Field When rs=D

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇
4 100 CVT.S * * * CVT.W CVT.L ∇ * *

5 101 * * * * * * * *

6 110 C.F
CABS.F ε∇

C.UN
CABS.UN ε∇

C.EQ
CABS.EQ ε∇

C.UEQ
CABS.UEQ ε∇

C.OLT
CABS.OLT ε∇

C.ULT
CABS.ULT ε∇

C.OLE
CABS.OLE ε∇

C.ULE
CABS.ULE ε∇

7 111 C.SF
CABS.SF ε∇

C.NGLE
CABS.NGLE ε∇

C.SEQ
CABS.SEQ ε∇

C.NGL
CABS.NGL ε∇

C.LT
CABS.LT ε∇

C.NGE
CABS.NGE ε∇

C.LE
CABS.LE ε∇

C.NGT
CABS.NGT ε∇

Table A-16 MIPS32 COP1 Encoding of Function Field When rs=W or L1

1. Format type L is legal only if 64-bit floating point operations are enabled.

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * CVT.PS.PW ε∇ *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table A-17 MIPS64 COP1 Encoding of Function Field When rs=PS1

1. Format type PS is legal only if 64-bit floating point operations are enabled.

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD ∇ SUB ∇ MUL ∇ * * ABS ∇ MOV ∇ NEG ∇
1 001 * * * * * * * *

2 010 * MOVCF δ∇ MOVZ ∇ MOVN ∇ * * * *

3 011 ADDR ε∇ * MULR ε∇ * RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇
4 100 CVT.S.PU ∇ * * * CVT.PW.PS ε∇ * * *

5 101 CVT.S.PL ∇ * * * PLL.PS ∇ PLU.PS ∇ PUL.PS ∇ PUU.PS ∇

6 110 C.F ∇
CABS.F ε∇

C.UN ∇
CABS.UN ε∇

C.EQ ∇
CABS.EQ ε∇

C.UEQ ∇
CABS.UEQ ε∇

C.OLT ∇
CABS.OLT ε∇

C.ULT ∇
CABS.ULT ε∇

C.OLE ∇
CABS.OLE ε∇

C.ULE ∇
CABS.ULE ε∇

7 111 C.SF ∇
CABS.SF ε∇

C.NGLE ∇
CABS.NGLEε∇

C.SEQ ∇
CABS.SEQ ε∇

C.NGL ∇
CABS.NGL ε∇

C.LT ∇
CABS.LT ε∇

C.NGE ∇
CABS.NGE ε∇

C.LE ∇
CABS.LE ε∇

C.NGT ∇
CABS.NGT ε∇

Table A-18 MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF

tf  bit 16

0 1

MOVF.fmt MOVT.fmt



322 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

A.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. This information is a tabular
presentation of the encodings described in tables Table A-13 and Table A-20 above.

Table A-19 MIPS32 COP2 Encoding of rs Field

rs  bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 θ β CFC2 θ MFHC2 θ⊕ MTC2 θ β CTC2 θ MTHC2 θ⊕
1 01 BC2 θ * * * * * * *

2 10
C2 θδ

3 11

Table A-20 MIPS64 COP1X Encoding of Function Field1

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1 ∇ LDXC1 ∇ * * * LUXC1 ∇ * *

1 001 SWXC1 ∇ SDXC1 ∇ * * * SUXC1 ∇ * PREFX ∇
2 010 * * * * * * * *

3 011 * * * * * * ALNV.PS ∇ *

4 100 MADD.S ∇ MADD.D ∇ * * * * MADD.PS ∇ *

5 101 MSUB.S ∇ MSUB.D ∇ * * * * MSUB.PS ∇ *

6 110 NMADD.S ∇ NMADD.D ∇ * * * * NMADD.PS ∇ *

7 111 NMSUB.S ∇ NMSUB.D ∇ * * * * NMSUB.PS ∇ *

Table A-21 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of

COP1X opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.

16 10 0 0 S Single 32 Floating
Point

17 11 1 1 D Double 64 Floating
Point

18..19 12..13 2..3 2..3 Reserved for future use by the architecture.

20 14 4 4 W Word 32 Fixed Point

21 15 5 5 L Long 64 Fixed Point

22 16 6 6 PS Paired
Single 2 × 32 Floating

Point

23 17 7 7 Reserved for future use by the architecture.



A.3 Floating Point Unit Instruction Format Encodings

MIPS32® Architecture For Programmers Volume II, Revision 2.50 323

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

24..31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

Table A-21 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of

COP1X opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex



324 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings



MIPS32® Architecture For Programmers Volume II, Revision 2.50 325

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

0.90 November 1, 2000 Internal review copy of reorganized and updated architecture documentation.

0.91 November 15, 2000 External review copy of reorganized and updated architecture documentation.

0.92 December 15, 2000

Changes in this revision:

• Correct sign in description of MSUBU.

• Update JR and JALR instructions to reflect the changes required by
MIPS16.

0.95 March 12, 2001 Update for second external review release.

1.00 August 29, 2002

Updated based on feedback from all reviews.

• Add missing optional select field syntax in mtc0/mfc0 instruction
descriptions.

• Correct the PREF instruction description to acknowledge that the
PrepareForStore function does, in fact, modify architectural state.

• To provide additional flexibility for Coprocessor 2 implementations, extend
the sel field for DMFC0, DMTC0, MFC0, and MTC0 to be 8 bits.

• Update the PREF instruction to note that it may not update the state of a
locked cache line.

• Remove obviously incorrect documentation in DIV and DIVU with regard
to putting smaller numbers in register rt.

• Fix the description for MFC2 to reflect data movement from the coprocessor
2 register to the GPR, rather than the other way around.

• Correct the pseudo code for LDC1, LDC2, SDC1, and SDC2 for a MIPS32
implementation to show the required word swapping.

• Indicate that the operation of the CACHE instruction is UNPREDICTABLE
if the cache line containing the instruction is the target of an invalidate or
writeback invalidate.

• Indicate that an Index Load Tag or Index Store Tag operation of the CACHE
instruction must not cause a cache error exception.

• Make the entire right half of the MFC2, MTC2, CFC2, CTC2, DMFC2, and
DMTC2 instructions implementation dependent, thereby acknowledging
that these fields can be used in any way by a Coprocessor 2 implementation.

• Clean up the definitions of LL, SC, LLD, and SCD.

• Add a warning that software should not use non-zero values of the stype
field of the SYNC instruction.

• Update the compatibility and subsetting rules to capture the current
requirements.



326 MIPS32® Architecture For Programmers Volume II, Revision 2.50

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix B Revision History

1.90 September 1, 2002

Merge the MIPS Architecture Release 2 changes in for the first release of a
Relesae 2 processor. Changes in this revision include:

• All new Release 2 instructions have been included: DI, EHB, EI, EXT, INS,
JALR.HB, JR.HB, MFHC1, MFHC2, MTHC1, MTHC2, RDHWR,
RDPGPR, ROTR, ROTRV, SEB, SEH, SYNCI, WRPGPR, WSBH.

• The following instruction definitions changed to reflect Release 2 of the
Architecture: DERET, ERET, JAL, JALR, JR, SRL, SRLV

• With support for 64-bit FPUs on 32-bit CPUs in Release 2, all floating point
instructions that were previously implemented by MIPS64 processors have
been modified to reflect support on either MIPS32 or MIPS64 processors in
Release 2.

• All pseudo-code functions have been udpated, and the
Are64bitFPOperationsEnabled function was added.

• Update the instruction encoding tables for Release 2.

2.00 June 9, 2003

Continue with updates to merge Release 2 changes into the document. Changes
in this revision include:

• Correct the target GPR (from rd to rt) in the SLTI and SLTIU instructions.
This appears to be a day-one bug.

• Correct CPR number, and missing data movement in the pseudocode for the
MTC0 instruction.

• Add note to indicate that the CACHE instruction does not take Address
Error Exceptions due to mis-aligned effective addresses.

• Update SRL, ROTR, SRLV, ROTRV, DSRL, DROTR, DSRLV, DROTRV,
DSRL32, and DROTR32 instructions to reflect a 1-bit, rather than a 4-bit
decode of shift vs. rotate function.

• Add programming note to the PrepareForStore PREF hint to indicate that it
can not be used alone to create a bzero-like operation.

• Add note to the PREF and PREFX instruction indicating that they may
cause Bus Error and Cache Error exceptions, although this is typically
limited to systems with high-reliability requirements.

• Update the SYNCI instruction to indicate that it should not modify the state
of a locked cache line.

• Establish specific rules for when multiple TLB matches can be reported (on
writes only). This makes software handling easier.

Revision Date Description



MIPS32® Architecture For Programmers Volume II, Revision 2.50 327

Copyright © 2001-2003,2005 MIPS Technologies Inc. All rights reserved.

2.50 July 1, 2005

Changes in this revision:

• Correct figure label in LWR instruction (it was incorrectly specified as
LWL).

• Update all files to FrameMaker 7.1.

• Include support for implementation-dependent hardware registers via
RDHWR.

• Indicate that it is implementation-dependent whether prefetch instructions
cause EJTAG data breakpoint exceptions on an address match, and suggest
that the preferred implementation is not to cause an exception.

• Correct the MIPS32 pseudocode for the LDC1, LDXC1, LUXC1, SDC1,
SDXC1, and SUXC1 instructions to reflect the Release 2 ability to have a
64-bit FPU on a 32-bit CPU. The correction simplfies the code by using the
ValueFPR and StoreFPR functions, which correctly implement the Release
2 access to the FPRs.

• Add an explicit recommendation that all cache operations that require an
index be done by converting the index to a kseg0 address before performing
the cache operation.

• Expand on restrictions on the PREF instruction in cases where the effective
address has an uncached coherency attribute.

Revision Date Description


	MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions


	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS32® Instruction Set
	3.1 Compliance and Subsetting
	3.2 Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	ALNV.PS
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.PS.S
	CVT.S.fmt
	CVT.S.PL
	CVT.S.PU
	CVT.W.fmt
	DERET
	DI
	DIV
	DIV.fmt
	DIVU
	EHB
	EI
	ERET
	EXT
	FLOOR.L.fmt
	FLOOR.W.fmt
	INS
	J
	JAL
	JALR
	JALR.HB
	JR
	JR.HB
	LB
	LBU
	LDC1
	LDC2
	LDXC1
	LH
	LHU
	LL
	LUI
	LUXC1
	LW
	LWC1
	LWC2
	LWL
	LWR
	LWXC1
	MADD
	MADD.fmt
	MADDU
	MFC0
	MFC1
	MFC2
	MFHC1
	MFHC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUB.fmt
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHC1
	MTHC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NMADD.fmt
	NMSUB.fmt
	NOP
	NOR
	OR
	ORI
	PLL.PS
	PLU.PS
	PREF
	PREFX
	PUL.PS
	PUU.PS
	RDHWR
	RDPGPR
	RECIP.fmt
	ROTR
	ROTRV
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SC
	SDBBP
	SDC1
	SDC2
	SDXC1
	SEB
	SEH
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SUXC1
	SW
	SWC1
	SWC2
	SWL
	SWR
	SWXC1
	SYNC
	SYNCI
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	WRPGPR
	WSBH
	XOR
	XORI

	Instruction Bit Encodings
	A.1 Instruction Encodings and Instruction Classes
	A.2 Instruction Bit Encoding Tables
	A.3 Floating Point Unit Instruction Format Encodings

	Revision History


