
CS 2506 Computer Organization II Test 1

A 1

Instructions:

• Print your name in the space provided below.

• This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No

calculators or other computing devices may be used. The use of any such device will be interpreted as an

indication that you are finished with the test and your test form will be collected immediately.

• Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly

indicate that and label the continuation with the question number.

• If you want partial credit, justify your answers, even when justification is not explicitly required.

• There are 5 questions, some with multiple parts, priced as marked. The maximum score is 100.

• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.

• If you brought a fact sheet to the test, write your name on it and turn it in with the test.

• Note that either failing to return this test, or discussing its content with a student who has not taken it is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2506 Computer Organization II Test 1

A 2

xkcd.com

CS 2506 Computer Organization II Test 1

A 3

1. [12 points] An ISA includes three classes of instructions: type I taking 1 clock cycle, type II taking 2 clock cycles and

type III taking 5 clock cycles. The execution of a particular program, running on a machine with a clock rate of 2.4 GHz,

will require 30% type I instructions, 50% type II instructions, and 20% type III instructions. What is the average CPI for

this program?

Avg CPI = .30 * 1 + .50 * 2 + .20 * 5 = .30 + 1.0 + 1.0 = 2.3

2. Suppose a program consists of 30% floating point multiply instructions, 20% floating point divide instructions, and the

remaining 50% are other instructions. Floating point division, floating point multiplication, and each of the other

instructions have the same CPI.

a) [8 points] What speedup can be achieved, for that program, if the execution of a floating point multiplication

instruction is made 3/2 times faster?

Amdahl’s Law says T_after = T_unaffected + T_affected / speedup
 = 0.70 * T_before + 0.30 * T_before / (3/2)
 = (.70 + .20) * T_before
 = 0.90 * T_before

So, speedup = T_before / T_after = 1 / 0.90 = 10/9.

b) [10 points] What speedup can be achieved, for the same program, if the execution of a floating point multiplication is

made 5/4 faster, and the execution of a floating point division instruction is made 4/3 faster?

Applying Amdahl’s Law again:

 T_after = 0.50 * T_before + 0.30 * T_before / (5/4) + 0.20 * T_before / (4/3)
 = (.50 + .24 + .15) * T_before
 = .89 * T_before

So, speedup = 1 / .89 = 100 / 89.

Aside: it’s incorrect to say that because the execution time was reduced by 11% (100 – 89) that
the speedup is 11%. (Although it’s close to that.) Suppose we reduced the execution time from
100 to 50; then the speedup would be 2, not 50%.

CS 2506 Computer Organization II Test 1

A 4

3. These questions refer to the single-cycle MIPS32 datapath (full diagram supplied with the test). Recall that this datapath

supports the following instructions: add, sub, and, or, slt, lw, sw, beq and j.

a) [10 points] For which supported instruction(s) would the data line from ALU result to Address below be necessary?

Give a precise explanation why.

Aside: note that the question clearly asks about the line from ALU result to Address; the other
branch from ALU result to the MUX is irrelevant.

b) [8 points] The MemRead control signal must be set to 0 unless a lw instruction is being executed. Explain why, for

example, an add instruction could lead to a runtime error if MemRead was set to 1. (Hint: think segfault!)

Recall that MemRead == 1 iff the value at Address is read.

The key is thing to remember is that processes are not allowed to read from just any address;
we’ve all seen enough C code that produces segmentation faults for just that reason.

Consider executing an add instruction that computes a sum of 0. If MemRead == 1, the Data
memory will attempt to read the value at address 0 --- a NULL pointer dereference.

Since we cannot anticipate what value will be emitted by the ALU when executing other
instructions, we cannot take the chance of setting MemRead to 1 in that situation.

That said, setting MemRead to 1 during a sw instruction will not cause a segmentation fault, but it
could affect performance.

Aside: for full credit, I expected your answer to address precisely how an segfault could be
triggered. Just saying that the add instruction would produce a value that’s in some sense random
doesn’t make the problem clear. The simplest way to explain this clearly is to show how the ALU
could yield an address that’s guaranteed to produce a segfault, namely 0.

This line passes a value computed in the ALU to the
Address port on the Data memory unit; the only
instructions that use the Address port on the Data
memory unit are lw and sw.

CS 2506 Computer Organization II Test 1

A 5

4. The hardware shown below was inserted when the datapath was extended for a specific instruction.

a) [8 points] Identify the instruction.

When executing that instruction, a portion of the instruction is sign-extended and then shifted left 2 bits. Shifting left 2

bits inserts two 0 bits at the low end of the value and chops two bits from the high end of the value.

b) [8 points] What is gained by applying the left shift to the value? Be precise.

The left shift is applied to the (sign-extended) immediate from the beq instruction; that
effectively multiplies the value by 4. Since that value is added to PC + 4, this effectively makes
it possible to branch to a target instruction that’s farther from the beq instruction.

Aside: 2 points for saying the shift multiplies bye immediate by 4; 4 points for saying that the
shift means we effectively have an 18-bit immediate instead of a 16-bit immediate; but neither of
those statements describes what’s GAINED.

c) [8 points] Why should we not be concerned about the two bits that are chopped from the high end of the sign-extended

value? Be precise.

When the 16-bit immediate is sign-extended, we tack 16 copies of its (formerly) high bit onto the
front of the immediate. That doesn’t actually change the value that’s represented (recall how 2’s
complement representation works); so we have an extended value of the following form:

b15…b15b15b14b13…b1b0

where b15 is either 0 or 1. Now, if b15 = 0, we have a nonnegative value, which is just being
represented in base-2, and chopping leading 0s obviously doesn’t change the value. If b15 = 1, we
have a negative value, in fact it’s the negative of the value represented by flipping all the bits
after the rightmost 1. If we chop off two leading 1s (from the representation of the negative
value), we still have a representation of the same negative value (consider the effect of the bit-
flipping described above).

When we chop off 2 high bits, we’re just chopping off redundant copies of the (former) high bit,
and that doesn’t change the value that’s represented.

Aside: there were a lot of confused (or confusing) answers to this question. Because of that, I
was picky about awarding full credit. I expected a clear explanation of why removing the two high
bits doesn’t really alter the value that’s represented; and that required saying something clear
about the 2’s complement representation that’s used.

This hardware is used to compute the branch
target address, and determine which address
to pass back to the PC.

That’s relevant only to beq.

CS 2506 Computer Organization II Test 1

A 6

d) [8 points] In order to correctly execute that instruction, the control signals Zero and Branch were added to the design

of the datapath. Explain why neither of those control signals would be sufficient by itself.

The Zero signal tells us whether the ALU just computed a result equaling zero; that has nothing to
do with what the current instruction is.

The Branch signal tells us whether the current instruction is beq, but nothing about whether the
two relevant registers are equal.

We jump to the branch target instruction iff the current is beq AND the two registers involved are
equal. So, we need both signals.

Aside: the question was about why neither of the two signals was sufficient by itself. A lot of
answers explained how the datapath design uses the two bits. That doesn’t answer the question of
why both are necessary. A correct answer needed to explain what necessary information was
unavailable if we had only the Zero signal or only the Branch signal.

CS 2506 Computer Organization II Test 1

A 7

5. [20 points] The MIPS32 instruction set includes the branch-on-not-equal (I-format) instruction:

bne $rs, $rt, Imm # if GPR[rt] != GPR[rs] then

 # PC = PC + 4 + (Imm << 2)

The given single-cycle datapath can be extended to support the branch-on-not-equal instruction, but that requires:

• replacing the Branch control signal with two signals

• modifying the hardware shown below to make proper use of those signals

Explain in detail how the changes described above would be made to provide support for branch-on-not-equal.

Explain how the control signals will be used, and explain any changes you would make to the hardware shown above.

You may alter, replace, or remove any parts of the hardware shown above. The best way to indicate your design decisions

would be to redraw the diagram given above, showing your changes with appropriate labels and explanations.

When executing a bne instruction, we want to jump to the branch target instruction iff the two
registers in question are not equal.

More precisely, we need two new signals (replacing Branch):

 - BEQ set to 1 iff the current instruction is beq
 - BNE set to 1 iff the current instruction is bne

The existing Zero signal is sufficient to tell us whether the two registers were equal.

The branch target address is calculated the same way for beq and bne.

So, we need to set the control signal for the existing MUX using the following Boolean logic:

 (BEQ && Zero) || (BNE && ~Zero)

Aside: you must have added a new control signal;
otherwise there’s no way to tell a beq from a bne.
That’s why the old Branch signal isn’t adequate.

There are a number of alternate solutions. Some
make use of a second MUX, some of a MUX with
three inputs, some with a more complex
arrangement of logic gates.

