
CS 2506 Computer Organization II Midterm

B 1

Instructions:

 Print your name in the space provided below.

 This examination is closed book and closed notes, aside from the permitted one-page formula sheet.

 No calculators or other computing devices may be used. The use of any such device will be interpreted as an

indication that you are finished with the test and your test form will be collected immediately.

 Answer each question in the space provided. If you need more space to answer a question, you are probably

thinking about it the wrong way.

 If you want partial credit, justify your answers, even when justification is not explicitly required.

 There are 9 questions, some with multiple parts, priced as marked. The maximum score is 100.

 When you have completed the test, sign the pledge at the bottom of this page, sign your fact sheet, and turn in

the test and fact sheet.

 Note that failing to return this test, and discussing its content with a student who has not taken it are violations

of the Honor Code.

Do not start the test until instructed to do so!

Answers are formatted in blue; commentary is in green.

Name Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2506 Computer Organization II Midterm

B 2

xkcd.com

CS 2506 Computer Organization II Midterm

B 3

1. [10 points] The MIPS32 machine language includes a 6-bit opcode field to specify the particular instruction. However,

this would only provide for 64 different machine instructions, so for R-type instructions (e.g., add, sub, or, etc.), the

opcode is set to zero and an additional funct field (also 6-bit) is used to differentiate them. An alternative design would

have widened the opcode field, say to 8 bits (for all machine instructions), and eliminated the funct field. Explain the

downside of this alterative design.

Extending the opcode field may allow us to differentiate all the machine instructions in a unified

manner. For R-type instruction, this new design would not affect the other fields in the machine

instruction because the unused funct field will free out some space.

However, this is not the case for I-type and J-type instructions. In detail, the immediate field

for I-type and J-type instructions should be reduced by two bits: i.e., from 16-bits to 14-bits

for I-type, from 26-bits to 24-bits for J-type instructions.

The downside of this reduced immediate field is that branch or jump instructions are now only able

to branch/jump out a smaller distance than the original design with larger immediate field.

2. [10 points] When compared to the single-cycle design, the pipelined MIPS datapath design achieves greater performance

when executing a sequence of instructions because it improves instruction throughput. On the other hand, the execution

time (latency) of each individual instruction actually increases. Explain why the latency increases.

The pipelined datapath is divided into multiple stages, which execute at the same clock cycle time.

The implication is that to ensure that all stages are finished before moving to the next stage, the

clock cycle needs to be as long as the longest stage. Even though one stage originally took less

time, it still has to wait on the longest step to finish. Thus, faster stages (e.g, ID, WB) will

actually have to wait the whole clock cycle.

CS 2506 Computer Organization II Midterm

B 4

3. Consider the following snippet of MIPS32 assembly code:

 . . .

 j L02

L01:

 sub $t2, $t2, $t1

L02: bgt $t2, $t3, L01

 . . .

a) [4 points] Assume that, immediately before the code given above is executed, $t1 holds the value 3, $t2 holds the

value 9, and $t3 holds the value 2. What is the value of $t2 after the above assembly code finishes?

Initially, $t1 == 3, $t2 == 9, and $t3 == 2

Code execution goes like this:

 j L02

 bgt $t2, $t3, L01 # $t2 == 9 and $t3 == 2, so we branch to L01

 sub $t2, $t2, $t1 # $t2 -= $t1, so $t2 == 6

 bgt $t2, $t3, L01 # $t2 == 6 and $t3 == 2, so we branch to L01

 sub $t2, $t2, $t1 # $t2 -= $t1, so $t2 == 3

 bgt $t2, $t3, L01 # $t2 == 3 and $t3 == 2, so we branch to L01

 sub $t2, $t2, $t1 # $t2 -= $t1, so $t2 == 0

 bgt $t2, $t3, L01 # $t2 == 0, so we do not branch and execution of this code stops

So, at the end, $t2 == 0.

(In the absence of work showing your logic, very little partial credit was given.)

b) [8 points] Disassemble the above assembly code and write equivalent C code. Suppose the C program uses variables

R, S, and T, which are mapped to $t1, $t2, and $t3, respectively.

From the analysis in part a), it's clear that this is a while loop (loop due to the backwards

branch, while due to the jump to the loop test before entering the loop body).

So, in terms of the registers we have:

while ($t2 > $t3) {

 $t2 = $t2 - $t1

}

Substituting in the given variable names, we have:

while (Y > Z) {

 Y = Y - X;

}

CS 2506 Computer Organization II Midterm

B 5

4. [10 points] Suppose the MIPS32 hardware supports only the instructions add, sub, and, or, slt, lw, sw, beq, and j.
Pseudo-instructions give MIPS a richer set of assembly language instructions than those implemented by the hardware.

Explain how the following pseudo-instruction can be implemented using only the supported instructions shown above. If

you need to use any "extra" registers, you may use the t-registers, $t0, $t1, and so forth.

 maxfrom $rd, ($rs), ($rt)

 # rd = Mem[GPR[rs]] < Mem[GPR[rt]] ? Mem[GPR[rt]] : Mem[GPR[rs]]

Executing this instruction requires loading two values from memory to registers, comparing them,

and then conditionally assigning a value to a third register:

 lw $t0, ($rs) # load first value to $t0

 lw $t1, ($rt) # load second value to $t1

 slt $t2, $t0, $t1 # $t2 = $t0 < $t1

 beq $t2, $zero, ELSE # if $t0 < $t1, $rd = $t1

 add $rd, $t1, $zero

 j DONE

ELSE: add $rd, $t0, $zero # else $rd = $t0

DONE:

The most common error was to fail to copy the values for the second and third operands from

memory into registers, so they could be operated on.

5. [10 points] The MIPS32 architecture reserves the $ra register (register number 31) to hold the return address (not the

return value) when a function call completes. Despite this, many MIPS programs use the runtime stack in memory to store

the return address. Explain why having the $ra is not sufficient, and a program may use the runtime stack in memory to

hold a return address. Illustrate your explanation by giving the outline of a relevant, short C program.

$ra registers can hold one return address at a time, so if there is a multiple (nested) function calls

in sequence the return address in $ra would be overwritten and lost. Therefore, the return

addresses should be stored somewhere (i.e., in stack) per each function call to be safe.

foo(){ bar(){ zoo(){

 bar(); // foo calls bar zoo(){ // bar calls zoo …

} } }

When foo() calls bar(), $ra would hold the address next to the call instruction in foo();

When bar() calls zoo(), $ra would be overwritten to the instruction address next to the call

instruction in bar();

Therefore, zoo() can safely return to bar(); but, bar() cannot return to foo().

(Many people provided a recursive function as an example.)

CS 2506 Computer Organization II Midterm

B 6

6. Suppose that the AND gate for the beq decision was replaced with an XNOR gate:

a) [6 points] Describe exactly how that (erroneous) change would affect the execution of beq instructions.

Recall that A xnor B == 1 iff A and B are equal.

So, if we are executing a beq instruction, we know that Branch == 1. Therefore, the XNOR

gate will output 1 iff Zero == 1, which means that the registers WERE equal.

Hence a beq instruction will branch iff it should branch!

The most common issue here was that the answer is an if-and-only-if statement; many answers

only specified half of that… a number of other answers ignored the fact the question was

specifically about the execution of beq instructions, and nothing else.

The second most common issue was to seemingly not recall the definition of XNOR.

b) [6 points] Describe exactly how that (erroneous) change would affect the execution of and instructions.

Now, if a sub instruction is being executed, Branch == 0. Hence, the XNOR gate will output 1

iff Zero == 0, which means the result of the subtraction IS NOT zero.

Therefore, if the result of an add instruction IS zero, the and instruction will execute

correctly, with no undesirable side-effects.

But, if the result of an and instruction IS NOT zero, the and instruction will correctly compute

the answer, and store it into the correct register, and also trigger a branch to an address that

is computed using the bits in the RD, SHAMT, and FUNCT fields of the instruction.

(And that will most likely result in a segfault.)

Again, the answer requires addressing two cases, and the question is specifically about the

execution of sub instructions, and nothing else.

CS 2506 Computer Organization II Midterm

B 7

7. Suppose a program currently spends 30% of its time executing integer addition instructions and 20% of its time executing

integer multiplication instructions (on the existing design), you want to improve the performance of that program by

modifying the hardware for those integer operations. Justify your answers to the following questions by using Amdahl's

Law.

a) [8 points] How much faster would the program execute if you made integer addition 2 times faster and integer

multiplication 4 times faster?

According to Amdahl's Law, the execution time after the improvement would be given by:

0.30 * 0.20 *
0.50 *

2 4
0.70 *

before before

after before

before

Time Time
Time Time

Time

So, the program would take 70% as long to execute; the speedup would be 100/70 or 1.429.

The instructions were to justify your conclusion "by using Amdahl's Law"; failure to explicitly

use Amdahl's Law cost 3 points here (and 2 points in part b).

b) [6 points] Suppose you need to reduce the running time of the program by 20%, but you are restricted to making

changes to either the addition hardware or the multiplication hardware, but not both. Which would you alter, and by

how much would you have to improve that hardware to achieve your goal? Or is it impossible to do so?

Since the program only spends 20% of its time running multiplication instructions, we cannot

reduce the running time by 20% by speeding up multiplication operations (unless we make them

take NO time, which is impossible).

Therefore, we must focus on speeding up addition operations. Applying Amdahl's Law again,

and letting S be the factor by which we will speedup multiplication operations:

0.30 *
0.80 * 0.70 * before

before before

Time
Time Time

S

Solving, we get that S == 3, so we must make multiplication twice as fast.

CS 2506 Computer Organization II Midterm

B 8

8. [12 points] The preliminary pipeline, as derived in lecture and shown in the supplement, does not have support for

forwarding operands or introducing stalls. Suppose the following sequence of instructions was executed on that pipeline

design:

lw $t4, 0($t1) # 1

and $t1, $t2, $t1 # 2

add $t5, $t4, $t3 # 3

sub $t1, $t5, $t3 # 4

Describe all of the logical errors that would occur. For each logical error, clearly identify the instruction whose execution

would be incorrect, and identify the register(s), if any, that are involved in the error.

Recall that no instruction actually writes a value to a register until that instruction reaches the WB

stage in the pipeline. Therefore, if an instruction is to read a value from a register, and an

earlier instruction has written that value, then the reading instruction must be at least 3 cycles

(stages) behind the writing instruction (unless we have forwarding, which we do not).

So, the code above would lead to the following logical errors:

 Instruction #3 (add) will read from register $t4 one cycle before instruction #1 (lw) writes

to $t4.

 Instruction #4 (sub) will read from register $t5 two cycles before instruction #3 (add)

writes to $t5.

CS 2506 Computer Organization II Midterm

B 9

9. [10 points] Suppose we want to support a new instruction, movnz (Move Conditional on Not Zero). The movnz instruction

is a R-type instruction that takes three register numbers, and conditionally moves a value from one register to another

register after testing the third register value. Specifically, if the value in GPR[rt] is not equal to zero, then the contents of

GPR[rs] are placed into GPR[rd]. Here is the formal specification.

Format: MOVNZ rd, rs, rt

Description: if (GRP[rt] != 0) then GRP[rd] ← GRP[rs]

Suppose we have already extended the Control Unit so that when a movnz instruction is decoded, it sets the new control

signal, called is_movnz, to be true (otherwise, false); and sets the ALUop control signal accordingly (the specific value

doesn’t matter) to make the extended ALU Unit behave as follows. First, the ALU Unit introduces the new control signal,

named ro_is_zero, and sets it true if the right operand (where the output of the MUX is fed) is zero. Second, the ALU Unit
simply forwards the value from the left operand (where GRP[rs] is fed) to its output, ALU Result, regardless of the value

of the right operand.

 Control Unit

 ALU Unit

Given the above extended Control Unit and ALU Unit, explain how the datapath should be further modified to support

movnz instruction.

For R-type instructions, by default, the output of ALU unit (ALU Result) is written back to the

destination register (GRP[rd]) because the control signals MemtoReg is 0; and RegWrite is 1.

For movnz instruction, ALU Result would hold GRP[rs] value (the left operand of ALU unit).

If is_movnz is true and ro_is_zero is false, we want to enable the write-back to GRP[rd].

If is_movnz is true and ro_is_zero is true, we want to disable the write-back to GRP[rd].

One way to implement this is to have two AND and one NOT gates as follows. In this specific

implementation, for non-movnz instructions, because is_movnz is set to 0, the register write-back

will be solely controlled by RegWrite as usual. For movnz instructions, because RegWrite is 1 (as in

R-type instruction), the register write-back will be controlled by ro_is_zero signal.

(There are many different but valid answers to this question).

