" Load-Use Data Hazard Pipeline Stalls 1

Consider the following sequence of instructions:
1w st2, 20(Stl) # a load—-use hazard
and $t4, $t2, S$t5

This hazard cannot be resolved by simple forwarding... why not?

IF M- 1D *H%H MEMH- -l wB
and

1w

The value 1w writes into $t 2 is not available until 1w completes the MEM stage, but
and needs that value when it enters the EX stage, which is when 1w enters the MEM
stage.

QTP: why can this situation not occur if
the loading instruction is R-type?

CS@VT Computer Organization Il ©2005-2013 McQuain

I Handling a Load-Use Hazard Pipeline Stalls 2

A load-use hazard requires delaying the execution of the using instruction until the result
from the /oading instruction can be made available to the using instruction.

1w St2, 20(stl) # loads St2
and S$t4, St2, Stb5 # uses S$St2

IF Ml 1D *H%H MEMH |- WB

and STALL 1w

If we can stall the execution of the using instruction for one cycle:

- value to be loaded to $t 2 will be available in the MEM/WB buffer when the using
instruction moves from ID to EX

- that value can be forwarded to the using instruction as the using instruction enters the
EX stage

CS@VT Computer Organization Il ©2005-2013 McQuain

. Detection Pipeline Stalls 3

When can we detect the existence of a load-use hazard?

When we are decoding the using instruction --- if we remember right information
about the preceding instruction.

What do we need to remember?

=

- whether the preceding instruction reads a value from

data memory — |D/EX.MemRead

- whether the preceding instruction writes a value to the
register file

—

- whether that value is written to a register that current |

. : ID/EX.RegisterRt
instruction reads from

IF/ID.RegisterRs
— IF/ID.RegisterRt

CS@VT Computer Organization Il ©2005-2013 McQuain

I Load-Use Hazard Detection Pipeline Stalls 4

The loading instruction must be just that... so it writes to register rt.

There 1s a load-use hazard when _
— 1 iff we're executing a load instruction

ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected... do what?

ID/EX shows register being written to;
IF/ID shows registers being read from

CS@VT Computer Organization Il ©2005-2013 McQuain

I How to Stall the Pipeline Pipeline Stalls 5

"If 1t 1sn't written down, 1t didn't happen." - _

RegDst |

Instr [31:26] Contro

- when using reaches |ID stage
- EX, MEM and WB do a nop

Branch EXp---
Force all control values in ID/EX register to 0 /\ Monfead (
| MemtoReg —

IF/ID ID/EX

Prevent update of PC and IF/ID registers
- using instruction is decoded again
- 1Instruction after the using instruction will be fetched again
- I-cycle stall allows MEM to read data for 1w

- can subsequently forward data to using instruction in EX stage

CS@VT Computer Organization Il ©2005-2013 McQuain

W Trace

1w
and

or
add

$2,
$4,
$8,
$9,

20($1)
$2, $5
$2, S6
$4, $2

H H H H
S w NN

IF +H ID

i)

or and

Pipeline Stalls 6

MEM

WB

I

When and reaches the ID stage, the hazard involving $2 is detected.

All the control signals from the ID stage are set to 0 and the PC and IF/ID
interstage buffer are prevented from updating.

CS@VT

Computer Organization Il

©2005-2013 McQuain

™ Trace Pipeline Stalls 7

Resetting the control signals and locking PC and IF/ID cause:

IF M- 1D *H%H MEMH -l wB

or and STALL 1w

Because IF/ID is not updated, the and instruction is processed through ID again.

Because PC is not updated, the or instruction is fetched again in the IF stage.

And:

- EX operates as usual (with all relevant signals 0)
- EX'sends only 0 control signals to MEM for the next cycle

1w reaches the MEM stage and reads the value to be written to $2.
That value goes into MEM/WB.

CS@VT Computer Organization Il ©2005-2013 McQuain

™ Trace Pipeline Stalls 8

E L D[% MEM- | wB

add or and STALL 1w

On the next cycle:

The control signals for and (set in ID in the previous cycle) reach EX.
The value for $2 in MEM/WB is forwarded to the ALU in EX.

And:
- MEM operates as usual (with all relevant signals 0)
- MEM sends only 0 control signals to WWB for the next cycle

Instructions preceding and proceed normally...

CS@VT Computer Organization Il ©2005-2013 McQuain

I Stall/Bubble in the Pipeline Pipeline Stalls 9

B =) e

On the following cycles:

add and STALL
IF +H ID [t%“ MEM+H WB
add or and

... and so on...

The execution time has increased by one clock cycle.

CS@VT Computer Organization Il ©2005-2013 McQuain

B Simplified Datapath with Hazard Detection

PCWrite

PC Instruction L,
memory

CS@VT

ID/EX.MemRead

Pipeline Stalls 10

Hazard
detection -
- unit
. N
=
(@)
I m WB
Control

IF/ID U & EX

| Instruction

Registers

IF/ID.RegisterRs

IF/ID.RegisterRt

IF/ID.RegisterRt .

IF/ID.RegisterRd

ID/EX.RegisterRt

EX/MEM
~WB Ll\iEM/WB
> M WB—
.
M
u >
X
N L am
_ Daw G
II\':I - Data X
< memory
. ' '
Rs Forwarding -‘
Rt unit)

Computer Organization Il

©2005-2013 McQuain

