
MIPS Assembly 1

Computer Organization IICS@VT ©2005-2013 McQuain

MIPS Hello World

Hello, World!

.data ## Data declaration section

String to be printed:

out_string: .asciiz "\nHello, World!\n"

.text ## Assembly language instructions go in text segment

main: ## Start of code section

li $v0, 4 # system call code for printing string = 4

la $a0, out_string # load address of string to be printed into $a0

syscall # call operating system to perform operation

specified in $v0

syscall takes its arguments from $a0, $a1, ...

li $v0, 10 # terminate program

syscall

This illustrates the basic structure of an assembly language program.

- data segment and text segment

- use of label for data object (which is a zero-terminated ASCII string)

- use of registers

- invocation of a system call

MIPS Assembly 2

Computer Organization IICS@VT ©2005-2013 McQuain

MIPS Register Names

MIPS assemblers support standard symbolic names for the general-purpose registers:

$zero stores value 0; cannot be modified

$v0-1 used for system calls and procedure return values

$a0-3 used for passing arguments to procedures

$t0-9 used for local storage; calling procedure saves these

$s0-7 used for local storage; called procedure saves these

And for the reserved registers:

$sp stack pointer

$fp frame pointer; primarily used during stack manipulations

$ra used to store return address in procedure call

$gp pointer to area storing global data (data segment)

$at reserved for use by the assembler

$k0-1 reserved for use by OS kernel

MIPS Assembly 3

Computer Organization IICS@VT ©2005-2013 McQuain

MIPS Arithmetic Instructions

All arithmetic and logical instructions have 3 operands

Operand order is fixed (destination first):

<opcode> <dest>, <leftop>, <rightop>

Example:

C code: a = b + c;

MIPS code: add $s0, $s3, $s2

“The natural number of operands for an operation like addition is three…requiring every

instruction to have exactly three operands, no more and no less, conforms to the

philosophy of keeping the hardware simple”

MIPS Assembly 4

Computer Organization IICS@VT ©2005-2013 McQuain

Basic MIPS Arithmetic Instructions

add $rd,$rs,$rt Addition with overflow

GPR[rd] <-- GPR[rs] + GPR[rt]

div $rs,$rt Division with overflow

$lo <-- GPR[rs]/GPR[rt]

$hi <-- GPR[rs]%GPR[rt]

mul $rd,$rs,$rt Multiplication without overflow

GPR[rd] <-- (GPR[rs]*GPR[rt])[31:0]

sub $rd,$rs,$rt Subtraction with overflow

GPR[rd] <-- GPR[rs] - GPR[rt]

Here are the most basic arithmetic instructions:

Instructions "with overflow" will generate an runtime exception if the computed result is

too large to be stored correctly in 32 bits.

There are also versions of some of these that essentially ignore overflow, like addu.

MIPS Assembly 5

Computer Organization IICS@VT ©2005-2013 McQuain

Limitations and Trade-offs

Design Principle: simplicity favors regularity.

Design Principle: smaller is faster.

Why?

Operands must be registers (or immediates), only 32 registers are provided

Each register contains 32 bits

Of course this complicates some things...

C code: a = b + c + d;

MIPS pseudo-code: add $s0, $s1, $s2

add $s0, $s0, $s3

MIPS Assembly 6

Computer Organization IICS@VT ©2005-2013 McQuain

Immediates

In MIPS assembly, immediates are literal constants.

Many instructions allow immediates to be used as parameters.

addi $t0, $t1, 42 # note the opcode

li $t0, 42 # actually a pseudo-instruction

Note that immediates cannot be used with all MIPS assembly instructions; refer to your

MIPS reference card.

Immediates may also be expressed in hexadecimal: 0x2A

MIPS Assembly 7

Computer Organization IICS@VT ©2005-2013 McQuain

MIPS Logical Instructions

Logical instructions also have three operands and the same format as the arithmetic

instructions:

<opcode> <dest>, <leftop>, <rightop>

Examples:

and $s0, $s1, $s2 # bitwise AND

andi $s0, $s1, 42

or $s0, $s1, $s2 # bitwise OR

ori $s0, $s1, 42

nor $s0, $s1, $s2 # bitwise NOR (i.e., NOT OR)

sll $s0, $s1, 10 # logical shift left

srl $s0, $s1, 10 # logical shift right

MIPS Assembly 8

Computer Organization IICS@VT ©2005-2013 McQuain

MIPS Load and Store Instructions

Transfer data between memory and registers

Example:

C code: A[12] = h + A[8];

MIPS code: lw $t0, 32($s3) # $t0 <-- Mem[$s3+32]

add $t0, $s2, $t0

sw $t0, 48($s3) # Mem[$s3+48] <-- $t0

Can refer to registers by name (e.g., $s2, $t2) instead of number

Load command specifies destination first: opcode <dest>, <address>

Store command specifies destination last: opcode <dest>, <address>

Remember arithmetic operands are registers or immediates, not memory!

Can’t write: add 48($s3), $s2, 32($s3)

MIPS Assembly 9

Computer Organization IICS@VT ©2005-2013 McQuain

Addressing Modes

In register mode the address is simply the value in a register:

lw $t0, ($s3) # use value in $s3 as address

In immediate mode the address is simply an immediate value in the instruction:

lw $t0, 0 # almost always a bad idea

In base + register mode the address is the sum of an immediate and the value in a

register:

lw $t0, 100($s3) # address is $s3 + 100

There are also various label modes:

lw $t0, absval

lw $t0, absval + 100

lw $t0, absval + 100($s3)

MIPS Assembly 10

Computer Organization IICS@VT ©2005-2013 McQuain

MIPS unconditional branch instructions:

j Label # PC = Label

b Label # PC = Label

jr $ra # PC = $ra

Unconditional Branch Instructions

These are useful for building loops and conditional control structures.

MIPS Assembly 11

Computer Organization IICS@VT ©2005-2013 McQuain

Decision making instructions

- alter the control flow,

- i.e., change the "next" instruction to be executed

MIPS conditional branch instructions:

bne $t0, $t1, <label> # branch on not-equal

PC += 4 + Label if

$t0 != $t1

beq $t0, $t1, <label> # branch on equal

Labels are strings of alphanumeric characters, underscores and periods, not

beginning with a digit. They are declared by placing them at the beginning

of a line, followed by a colon character.

Conditional Branch Instructions

if (i == j)

h = i + j;

bne $s0, $s1, Miss

add $s3, $s0, $s1

Miss:

MIPS Assembly 12

Computer Organization IICS@VT ©2005-2013 McQuain

Conditional Control Structure

if (i < j)

goto A;

else

goto B;

$s3 == i, $s4 == j

slt $t1, $s3, $s4

beq $zero, $t1, B

A: # code...

b C

B: # code...

C:

MIPS Assembly 13

Computer Organization IICS@VT ©2005-2013 McQuain

for Loop Example

int Sum = 0;

for (int i = 1; i <= N; ++i) {

Sum = Sum + i;

}

$s0 == Sum, $s1 == N, $t0 == i

move $s0, $zero # register assignment

lw $s1, N # assume global symbol

li $t0, 1 # literal assignment

loop: beq $t0, $s1, done # loop test

add $s0, $s0, $t0 # Sum = Sum + i

addi $t0, $t0, 1 # ++i

b loop # restart loop

done:

MIPS Assembly 14

Computer Organization IICS@VT ©2005-2013 McQuain

Policy of Use Conventions

Register 1 ($at) is reserved for the assembler, 26-27 ($k0, $k1) for operating system.

Registers 28-31 ($gp, $sp, $fp, $ra) are reserved for special uses, not user variables.

Name Register number Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

MIPS programmers are expected to conform to the following conventions when using the

29 available 32-bit registers:

MIPS Assembly 15

Computer Organization IICS@VT ©2005-2013 McQuain

Pseudo-Instructions

You may have noticed something is odd about a number of the MIPS instructions that

have been covered so far. For example:

li $t0, 0xFFFFFFFF

Now, logically there's nothing wrong with wanting to place a 32-bit value into one of the

registers.

But there's certainly no way the instruction above could be translated into a 32-bit

machine instruction, since the immediate value alone would require 32 bits.

This is an example of a pseudo-instruction. A MIPS assembler, or SPIM, may be

designed to support such extensions that make it easier to write complex programs.

In effect, the assembler supports an extended MIPS architecture that is more sophisticated

than the actual MIPS architecture of the underlying hardware.

Of course, the assembler must be able to translate every pseudo-instruction into a

sequence of valid MIPS assembly instructions.

MIPS Assembly 16

Computer Organization IICS@VT ©2005-2013 McQuain

Basic fact: at the machine language level there are no explicit data types, only

contents of memory locations. The concept of type is present only

implicitly in how data is used.

Data

declaration: reserving space in memory, or deciding that a certain data item will reside

in a certain register.

Directives are used to reserve or initialize memory:

.data # mark beginning of a data segment

.asciiz "a string" # declare and initialize a string

.byte 13, 14, -3 # store values in successive bytes

.space 16 # alloc 16 bytes of space

.word 13, 14, -3 # store values in successive words

A complete listing of MIPS/MARS directives can be found in the MARS help feature.

MIPS Assembly 17

Computer Organization IICS@VT ©2005-2013 McQuain

Arrays

First step is to reserve sufficient space for the array.

.data

list: .word 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

size: .word 10

. . .

la $t1, list # get array address

li $t2, 0 # set loop counter

print_loop:

beq $t2, $t3, print_loop_end # check for array end

lw $a0, ($t1) # print value at the array pointer

li $v0, 1

syscall

addi $t2, $t2, 1 # advance loop counter

addi $t1, $t1, 4 # advance array pointer

j print_loop # repeat the loop

print_loop_end:

Array elements are accessed via their addresses in memory, which is convenient if you’ve
given the .space directive a suitable label.

MIPS Assembly 18

Computer Organization IICS@VT ©2005-2013 McQuain

Array Example

This is part of the palindrome example from the course website:

.data

string_space: .space 1024

...

prior to the loop, $t1 is set to the address of the first

char in string_space, and $t2 is set to the last one

test_loop:

bge $t1, $t2, is_palin # if lower pointer >= upper

pointer, yes

lb $t3, ($t1) # grab the char at lower ptr

lb $t4, ($t2) # grab the char at upper ptr

bne $t3, $t4, not_palin # if different, it's not

addu $t1, $t1, 1 # advance lower ptr

subu $t2, $t2, 1 # advance upper ptr

j test_loop # repeat the loop

...

MIPS Assembly 19

Computer Organization IICS@VT ©2005-2013 McQuain

Procedure Support

From previous study of high-level languages, we know the basic issues:

- declaration: header, body, local variables

- call and return

- parameters of various types, with or without type checking, and a return value

- nesting and recursion

At the machine language level, there is generally little if any explicit support for

procedures. This is especially true for RISC architectures.

There are, however, many conventions at the assembly language level.

MIPS Assembly 20

Computer Organization IICS@VT ©2005-2013 McQuain

Procedure Call and Return

Calling a procedure requires transferring execution to a different part of the code… in

other words, a branch or jump operation:

MIPS reserves register $31, aka $ra, to store the return address.

jal <address> # $ra = PC + 4

PC = <address>

The called procedure must place the return value (if any) somewhere from which the
caller can retrieve it. The convention is that registers $v0 and $v1 can be used to hold

the return value. We will discuss what to do if the return value exceeds 4 bytes later…

Returning from the procedure requires transferring execution to the return address the
jal instruction placed in $ra:

jr $ra # PC = $ra

MIPS Assembly 21

Computer Organization IICS@VT ©2005-2013 McQuain

Passing Parameters

In most cases, passing parameters is straightforward, following the MIPS convention:

The called procedure can then access the parameters by following the same convention.

What if a parameter needs to be passed by reference? Simply place the address of the

relevant data object in the appropriate register, and design the called procedure to treat

that register value accordingly.

What if a parameter is smaller than a word? Clever register manipulation in the callee.

What if there are more than four parameters? We'll discuss that later…

$a0 # 1st parameter

$a1 # 2nd parameter

$a2 # 3rd parameter

$a3 # 4th parameter

MIPS Assembly 22

Computer Organization IICS@VT ©2005-2013 McQuain

Procedure Example 1

Let's implement a MIPS procedure to get a single integer input value from the user and

return it:

get_integer:

Prompt the user to enter an integer value. Read and return

it. It takes no parameters.

li $v0, 4 # system call code for printing a

string = 4

la $a0, prompt # address of string is argument 0 to

print_string

syscall # call operating system to perform

print operation

li $v0, 5 # get ready to read in integers

syscall # system waits for input, puts the

value in $v0

jr $ra

Since this doesn't use any registers that it needs to save, there's no involvement with the

run-time stack.

MIPS Assembly 23

Computer Organization IICS@VT ©2005-2013 McQuain

Procedure Call Example 1

Since the procedure does not take any parameters, the call is simple. The return value
will, by convention, have been placed in $v0.

. . .

.data # Data declaration section

prompt: .asciiz "Enter an integer value\n"

.text

main: # Start of code section

jal get_integer # Call procedure

move $s0, $v0 # Put returned value in "save" reg

. . .

MIPS Assembly 24

Computer Organization IICS@VT ©2005-2013 McQuain

Procedure Example 2

Let's design a procedure to take some integer parameters and compute a value from them

and return that value. Say the expression to be computed is:

(a + b) – (c + d)

Then the caller needs to pass four arguments to the procedure; the default argument

registers are sufficient for this.

The procedure only returns a single one-word value, so the default register is enough.

The procedure will to use at least two registers to store temporary values while computing

the expression, and a third register to hold the final result.

The procedure will use $t0 and $t1 for the temporaries, and $s0 for the result.

(This could be done with fewer registers, but it's more illustrative this way.)

MIPS Assembly 25

Computer Organization IICS@VT ©2005-2013 McQuain

Procedure Example 2

This one's a little more interesting:

proc_example:

addi $sp, $sp, -4 # adjust stack pointer to make

room for 1 item

sw $s0, 0($sp) # save the value that was in

$s0 when the call occurred

add $t0, $a0, $a1 # $t0 = g + h

add $t1, $a2, $a3 # $t1 = i + j

sub $s0, $t0, $t1 # $s0 = (g + h) - (i + j)

move $v0, $s0 # put return value into $v0

lw $s0, 0($sp) # restore value of $s0

addi $sp, $sp, 4 # restore the stack pointer

jr $ra # jump back to the return

address

MIPS Assembly 26

Computer Organization IICS@VT ©2005-2013 McQuain

Procedure Call Example 2

This time we must place the parameters (presumably obtained by calling the procedure
get_integer), into the default argument registers.

. . .

move $a0, $s0 # position the parameters

move $a1, $s1

move $a2, $s2

move $a3, $s3

jal proc_example # make the call

move $a0, $v0 # return value will be in $v0

li $v0, 1 # system call code for print_int

syscall # print it

. . .

MIPS Assembly 27

Computer Organization IICS@VT ©2005-2013 McQuain

MIPS Memory Organization

In addition to memory for static data and the program text (machine code), MIPS provides

space for the run-time stack (data local to procedures, etc.) and for dynamically-allocated

data:

Dynamic data is accessed via pointers held by the program being executed, with addresses

returned by the memory allocator in the underlying operating system.

Stack

Dynamic data

Static data

Text

Reserved

$sp # last word alloc on stack

$gp # ptr into global data

$pc # ptr to next instruction

MIPS Assembly 28

Computer Organization IICS@VT ©2005-2013 McQuain

The System Stack

MIPS provides a special register, $sp, which holds the address of the most recently

allocated word on a stack that user programs can employ to hold various values:

Note that the run-time stack is "upside-down". That is, $sp, decreases when a value is

added to the stack and increases when a value is removed.

So, you decrement the stack pointer by 4 when pushing a new value onto the stack and

increment it by 4 when popping a value off of the stack.

MIPS Assembly 29

Computer Organization IICS@VT ©2005-2013 McQuain

Using the System Stack

MIPS programs use the runtime stack to hold:

- "extra" parameters to be passed to a called procedure

- register values that need to be preserved during the execution of a called procedure

and restored after the return

- saved procedure return address, if necessary

- local arrays and structures, if any

activation record

or stack frame

for called

procedure

MIPS Assembly 30

Computer Organization IICS@VT ©2005-2013 McQuain

System Stack Conventions

By convention, the caller will use:

- registers $s0 - $s7 for values it expects to be preserved across any procedure calls

it makes

- registers $t0 - $t9 for values it does not expect to be preserved

It is the responsibility of the called procedure to make sure that if it uses any of the
registers $s0 - $s7 it backs them up on the system stack first, and restores them before

returning.

Obviously, the called procedure also takes responsibility to:

- allocate any needed space on the stack for local data

- place the return value onto the stack

In some situations, it is useful for the caller to also maintain the value that $sp held when

the call was made, called the frame pointer. The register $fp would be used for this

purpose.

