What IS make? GNU Make 1

make IS a system utility for managing the build process (compilation/linking/etc).

There are various versions of make; these notes discuss the GNU ma ke utility included on
Linux systems.

As the GNU Make manual* says:

The make utility automatically determines which pieces of a large program
need to be recompiled, and issues commands to recompile them.

Using make yields a number of benefits, including:

- faster builds for large systems, since only modules that must be recompiled will be
- the ability to provide a simple way to distribute build instructions for a project
- the ability to provide automated cleanup instructions

*http://www.gnu.org/software/make/manual /make.pdf

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Minimal Approach: Source Base GNU Make 2

The following presentation is based upon the following collection of C source files:

driver.c the main “driver”

CSet.h the "public" interface of the CSet type
CSet.c the implementation of the CSet type
gradeCSet.h the "public" interface of the test harness
gradeCSet.c the implementation of the test harness

The example is derived from an assignment that is occasionally used in CS 2506.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Minimal Approach: a simple makefile GNU Make 3

Here's a minimal makefile for the given source base:

CSet minimal makefile

#

SHELL=/bin/bash

#

Specify compiler and compiler switches:
CC=gcc

CFLAGS=-std=cll -Wall -W -00 -ggdb3

#

Build executable for testing:
driver: driver.c CSet.c gradeCSet.c
$(CC) S(CFLAGS) -o driver driver.c CSet.c gradeCSet.c

#
Remove object files:
clean:
rm -f *.o driver
#
Archive source and makefile:
package:

tar cvf CSetCode.tar *.c *.h makefile

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Minimal Approach: make options GNU Make 4
The given makefile provides:

- away to create an executable from the given source files: make driver

#
Build executable for testing:
driver: driver.c CSet.c gradeCSet.c
$(CC) S(CFLAGS) -o driver driver.c CSet.c gradeCSet.c

- away to clear the directory of stale files: make clean

#
Remove object files:
clean:

rm —-f *.o0 driver

- away to package the source files: make package

#
Archive source and makefile:
package:
tar cvf CSetCode.tar *.c *.h makefile

CS@VT Computer Organization Il ©2013-2021 WD McQuain

™ Minimal Approach: Limitations GNU Make 5

The given makefile does not take advantage of the most interesting feature of make:

- the ability to only recompile files that are affected by changes

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Standard Example: Source Base GNU Make 6

The following presentation is based upon the following collection of C modules:

cO5driver.c driver for testing code

arrayList.h public interface for arrayL.ist data structure
arrayList.c implementation of arrayL.ist functions
MLBPerson.h public interface of MLBPerson data type
MLBPerson.c implementation of MLBPerson functions
mlbSelector.h public interface of mlbSelector tools
mlbSelector.c implementation of mlbSelector functions
alTester.h public interface of high-level testing tools
alTester.c implementation of high-level testing functions
alTestHelper.h public interface of low-level testing tools
alTestHelper.c implementation of low-level testing tools

The example is derived from an assignment that has been used in CS 2505.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Determining Dependencies GNU Make 7

grep can be used to discover include directives related to files in the project:
We ignore include directives that load Standard Library headers.

We must pay attention to include directives for both .h and .c files in each module.

alTester.h: #include "arrayList.h"
alTester.c: #include "alTester.h"
alTester.c: #include "alTestHelper.h"
alTester.c: #include "MLBPerson.h"
alTester.c: #include "mlbSelector.h"

From the information above, we see that the a1l Tester module depends on:
 the alTesterHelper module

* the MLBPerson module
e ThemlbSelector module

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Determining Dependencies GNU Make 8

For the other modules, we get these include directives:

alTestHelper.h: #include "arrayList.h"
alTestHelper.c: #include "alTestHelper.h"
alTestHelper.c: #include "MLBPerson.h"

c05driver.c: #include "mlbSelector.h"
c05driver.c: #include "arrayList.h"
c05driver.c: #include "MLBPerson.h"
c05driver.c: #include "alTester.h

So, the alTestHelper module depends on:

e the arrayList module
e the MLBPerson module

And, the c05driver module depends on all the others (as we might expect).

CS@VT Computer Organization Il ©2013-2021 WD McQuain

o Dependency Map GNU Make 9

The C modules exhibit the following dependencies (due to include directives):

cO05driver

I

alTester

/\.

alTestHelper mlbSelector

/T

arrayList MLBPerson

A module must be recompiled/relinked if any module it depends on, directly or indirectly,
has been changed.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Makefiles and Rules GNU Make 10

You use a kind of script called a makefile to tell make what to do.

A simple makefile is just a list of rules of the form:

target ... : prerequisites ...
recipe

Prerequisites are the files that are used as input to create the target.

A recipe specifies an action that make carries out.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

o Defining a Simple Rule GNU Make 11

Here is a simple rule for compiling arrayList.c (and so producing arrayList.o):

target prerequisites

A A
|] | 1

arraylList.o: arraylist.c arraylList.h
$(CC) S(CFLAGS) -c arraylist.c

\ I\)
| |

tab!! recipe

So, iIf we invoke make on this rule, make will execute the command:
gcc —std=cll —-Wall -W —ggdb3 -c arraylist.c

which will (ideally) result in the creation of the object file arrayList. o.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Defining a Simple Rule GNU Make 12

Here is a simple rule for compiling arrayList.c (and so producing arrayList.o):

arrayList.o: arraylist.c arraylList.h
$(CC) S(CFLAGS) -c arraylist.c

The list of prerequisites guarantees that if arrayList.c (or arrayList.h) changes,
then arrayList .o will be recreated to reflect changes that may have affected it.

We could invoke this rule as follows:

centos > make arraylList.o
gcc -std=cll -Wall -W -ggdb3 -c arraylList.c

Invoked again, make detects no need to recompile:

centos > make arraylList.o
make: 'arraylList.o' is up to date.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Defining a More Complex Rule GNU Make 13

Here is a simple rule for producing alTestHelper. o:

alTestHelper.o: alTestHelper.c alTestHelper.h arraylList.o MLBPerson.o
$(CC) S(CFLAGS) -c alTestHelper.c

Now, alTestHelper.c will be recompiled if any of these conditions hold:
- any prerequisite is more recent than alTestHelper.o

- any prerequisite has a prerequisite that is more recent than itself (in which case that
prerequisite will also be recompiled)

centos > make alTestHelper.o

gcc -std=cll -Wall -W -ggdb3 -c arraylList.c
gcc -std=cll -Wall -W -ggdb3 -c MLBPerson.c
gcc -std=cll -Wall -W -ggdb3 -c alTestHelper.c

centos > touch MLBPerson.o

centos > make alTestHelper.o
gcc -std=cll -Wall -W -ggdb3 -c alTestHelper.c

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Using Targets as Prequisites GNU Make 14

Note that in the rule just given we have specified other targets as prerequisites:

alTestHelper.o: alTestHelper.c alTestHelper.h arraylList.o MLBPerson.o
S(CC) S (CFLAGS) -c alTestHelper.c

That’s what enables the “chaining” effect seen below:

centos > touch MLBPerson.c

centos > make alTestHelper.o

gcc —-std=cll -Wall -W -ggdb3 -c MLBPerson.c
gcc -std=cll -Wall -W -ggdb3 -c alTestHelper.c

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Makefile Variables GNU Make 15

We can define variables in our makefile and use them in recipes:

CC=gcc
CFLAGS=-std=cll -Wall -W

arrayList.o: arraylList.c arraylList.h
S (CC) S(CFLAGS) -c arraylist.c

This would make it easier to alter the compiler options for all targets (or to change
compilers).

Syntax note: no spaces around '=".

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Rules Without Prerequisites GNU Make 16

We can also define a rule with no prerequisites; the most common use is probably to define
a cleanup rule:

clean:
rm —-f *.o *.stackdump

Invoking make on this target would cause the removal of all object and stackdump files
from the directory.

This rule is handy for backing up the current source files:

package:
tar cvf c05 source.tar *.h *.c

CS@VT Computer Organization Il ©2013-2021 WD McQuain

A Complete Makefile GNU Make 17

Here is a complete makefile for the example project:

Specify shell to execute recipes
SHELL=/usr/bin/bash

Set compilation options:

-Wall show "all" warnings

#

#

-std=cll use Cl1l Standard features

#

-W show even more warnings (annoyingly informative)

#

Specify compiler and compiler switches:
CC=gcc

CFLAGS=-std=cll -Wall -W

CS@VT Computer Organization Il ©2013-2021 WD McQuain

A Complete Makefile GNU Make 18

#
Rule for making a debug build:
debug: cO05driver.c alTester.o
$(CC) S$(CFLAGS) -o c05 -00 -ggdb3 c05driver.c alTester.o \
alTestHelper.o mlbSelector.o arraylist.o MLBPerson.o

#
Rule for making a release build:
release: cObdriver.c alTester.o
$(CC) S(CFLAGS) -o c05 c0O5driver.c alTester.o alTestHelper.o \
mlbSelector.o arraylList.o MLBPerson.o

CS@VT Computer Organization Il ©2013-2021 WD McQuain

A Complete Makefile GNU Make 19

Rules for building the modules:
alTester.o: alTester.c alTester.h alTestHelper.o mlbSelector.o
$(CC) S(CFLAGS) -c alTester.c

alTestHelper.o: alTestHelper.c alTestHelper.h arraylList.o MLBPerson.o
$(CC) S(CFLAGS) -c alTestHelper.c

mlbSelector.o: mlbSelector.c mlbSelector.h
S(CC) $(CFLAGS) -c mlbSelector.c

arraylist.o: arraylist.c arraylList.h
$(CC) S(CFLAGS) -c arraylList.c

MLBPerson.o: MLBPerson.c MLBPerson.h
S (CC) $(CFLAGS) -c MLBPerson.c

CS@VT Computer Organization Il ©2013-2021 WD McQuain

LN Complete Makefile GNU Make 20

#
Rule for packing up source files:
package:
tar cvf c05 source.tar *.h *.c
#
Rule for cleaning object files from directory:
clean:

rm -f *.o0 c05

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Running make GNU Make 21

make can be invoked in several ways, including:

make
make <target>
make —-f <makefile name> <target>

In the first two cases, make looks for a makefile, in the current directory, with a default
name. GNU make looks for the following names, in this order:

GNUmakefile
makefile
Makefile

If no target is specified, make will process the first rule in the makefile.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

Examples using make

Using the makefile shown above, and the source files indicated earlier:

CS

centos > 11
total 60
—YW—rw—-r——.

—Yrw—rw—-r—-—.

—Yrw—-Irw—-r—-—.

—Yrw—rw—-r—-—.

—Yrw—Irw—r—-—.

—Yrw—Irw—-r—-—.

—Yrw—Irw—-r—-—.

—Yrw—Irw—-r—-—.

—Yrw—Irw—-r—-—.

—Yrw—Irw—-r—-—.

—Yrw—Irw—-r—-—.

—Yrw—Irw—-r—-—.

F R R P RPPRPRPRRRPR PP

centos > make

gcc
gcc
gcc
gcc
gcc
gcc

VT

-std=cll
-std=cll
-std=cll
-std=cll
-std=cll
-std=cll

-Wall
-Wall
-Wall
-Wall
-Wall
-Wall

wmcquain
wmcquain
wmcquain
wmcquain
wmcguain
wmcguain
wmcguain
wmcguain
wmcguain
wmcguain
wmcguain
wmcqualn

release

wmcquain
wmcquain
wmcquain
wmcquain
wmcquain
wmcquain
wmcquain
wmcquain
wmcquain
wmcquain
wmcquain
wmcqualin

Computer Organization Il

5502
1939
5823
3720
3563
5072
3846
1117
2224
1706
1139

697

arraylList.c
MLBPerson.c
alTestHelper.c
mlbSelector.c
alTester.c
c05 cO0bdriver.c alTester.o alTestHelper.o \

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

20
20
20
20
20
20
20
20
20
20
20
20

20:
20:
20:
20:
20:
20:
20:
21:
20:
20:
20:
20:

56
56
56
56
56
56
56
02
56
56
56
56

GNU Make 22

alTester.c
alTester.h
alTestHelper.c
alTestHelper.h

arraylList.
arrayList.
cO0bdriver.

makefile

MLBPerson.
MLBPerson.

©
h
c

c
h

mlbSelector.c
mlbSelector.h

mlbSelector.o arraylList.o MLBPerson.o

©2013-2021 WD McQuain

Examples using make GNU Make 23
Now, I’ll modify one of the C files and run make again:

centos > touch MLBPerson.c

centos > make release

gcc —-std=cll -Wall -W -c MLBPerson.c

gcc —-std=cll -Wall -W -c alTestHelper.c

gcc —-std=cll -Wall -W -c alTester.c

gcc -std=cll -Wall -W -o c05 cO5driver.c alTester.o alTestHelper.o \
mlbSelector.o arrayList.o MLBPerson.o

The only recipes that were invoked were those for the targets that depend on
MLBPerson.c.

CS@VT Computer Organization Il ©2013-2021 WD McQuain

