
CS 2506 Computer Organization II  Midterm 

B 1 

  

 
 

 

 

Instructions:   

 

 Print your name in the space provided below.  

 This examination is closed book and closed notes, aside from the permitted one-page formula sheet.   

 No calculators or other computing devices may be used.  The use of any such device will be interpreted as an 

indication that you are finished with the test and your test form will be collected immediately. 

 Answer each question in the space provided.  If you need more space to answer a question, you are probably 

thinking about it the wrong way. 

 If you want partial credit, justify your answers, even when justification is not explicitly required. 

 There are 10 questions, priced as marked.  The maximum score is 100. 

 When you have completed the test, sign the pledge at the bottom of this page, sign your fact sheet, and turn in 

the test and fact sheet.   

 Note that failing to return this test, and discussing its content with a student who has not taken it are violations 

of the Honor Code. 

 

 

Do not start the test until instructed to do so! 
 

 

 

 

 

 

 

 

 

 

 

Name   Solution        

 printed 
 
 
 

Pledge:  On my honor, I have neither given nor received unauthorized aid on this examination. 

 
 
 
            

 signed 

 

  



CS 2506 Computer Organization II  Midterm 

B 2 

 

 
 

xkcd.com 

 

  



CS 2506 Computer Organization II  Midterm 

B 3 

For questions 1 and 2: 

 

Suppose that a buggy implementation of the single-cycle MIPS32 data path miswires the handling of bits [20:16] and bits 

[25:21] as shown below: 

 

 
  

The datpath supports execution of any sequence of add, sub, and, or, slt, lw, sw, beq, and j instructions. 

 

Everything else in the datapath is implemented as shown on the single-cycle datapath diagram in the Supplement.  All the 

control signals would be set as discussed in class.  For each question below, we will assume that registers and memory 

locations hold the values shown in the tables below. 

 

1. [10 points]  Which, if any, of the supported instructions would always be executed correctly on the buggy datapath shown 

above?  No explanation is needed. 

 

The first "bug" was that the read register number fields are reversed when pulled from the 

instruction bits; but the second "bug" is that the wiring then swaps them back.  In addition, the 

correct bits [20:16] and [15:11] are sent to the MUX controlled by RegDst, so the result is that 

this will perform as the original design intended. 

 

The unaffected instructions would be: 

 

add, sub, and, or, slt, beq, lw, sw, j 

 

Note that, if the read registers were actually swapped: 

 

 Commutative R-type instructions would be unaffected (add, and, or) 

 beq would be unaffected since it only cares if the registers store equal values 

 j would still be unaffected, since it doesn't care about any registers at all 

 lw and sw would be affected, since their address calculation would use the wrong register 

 

So, if the registers were actually swapped, the only unaffected instructions would be: 

 

add, and, or, beq, j 
 

  



CS 2506 Computer Organization II  Midterm 

B 4 

2. [10 points] Suppose that the Registers and Data memory initially hold the values shown in the tables below.  How 

would the contents of the Registers and Data memory be changed, if the following instruction was executed?  Justify 

your answer. 

 
lw   $t0, 2000($t1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The actual error means that: 

 

   $t1 is used for Read register 1, and goes to the ALU 

   $t0 is used for Read register 2 and also for the write-to register 

 

The address is computed as:  $t1 + 2000 == 3000, and so: 

 

$t0 = Mem[3000] = 30 

 

 

OTOH, if the read registers had been swapped (so this is incorrect but a common error): 

 

   $t0 would be used for Read register 1, and for the write-to register, and go to the ALU 

   $t1 would be used for Read register 2 and go to the ALU 

 

The address would be computed as:  $t0 + 2000 == 2000 

 

$t0 = Mem[2000] = 20 

 

There were many strange answers that seemed to confuse register values with memory addresses.  

The value in a register could be an address, but there's nothing in this question that suggests 

that. 
  

Register value 
$t0 0 

$t1 1000 

$t2 2000 

$t3 3000 

Address value 
0 segfault 

1000 10 

2000 20 

3000 30 

4000 40 

5000 50 

6000 60 

7000 70 



CS 2506 Computer Organization II  Midterm 

B 5 

For questions 3 and 4 we refer to the single-cycle datapath as shown on the Supplement: 

 

Suppose that every control signal is set to the value that would be correct if a beq instruction were being executed, but that the 

following instruction was actually placed into the datapath: 

 
add  $s7, $t1, $t5 

 

3. [10 points] List every action that should occur when the add instruction is executed, but that will not be executed 

correctly in this case.  Be specific in describing each action. 

 

The following actions, are necessary for executing add correctly: 

 

 Reading the correct two registers 

 Sending both those values to the ALU; i.e., ALUsrc == 0 

 The ALU must perform an ADD; so ALUop must indicate an ADD 

 The computed sum is sent to the Register unit; so MemtoReg == 0 

 That value is stored in $s7; so RegWrite == 1 and RegDst == 0 

 MemRead (arguably) and MemWrite must be set to 0 

 Branch and Jump must be set to 0 

 

The following actions, necessary for executing ADD correctly, would not be done correctly: 

 

 The ALU will perform a subtraction operation, since BEQ requires that. 

 No value will be written to $s7, since RegWrite is 0 for a BEQ instruction. 

 Branch will be set to 1. 

 An unknown value will be sent to the Register unit, since MemtoReg is a D/C for BEQ. 

 An $s7 may or may not be chosen, since RegDst is a D/C for BEQ. 
 

 

 

 

 

 

4. [10 points] Could a branch be performed when this add instruction is executed?  Explain precisely. 

 

Yes, if the subtraction in the ALU yields 0, since Branch will be set to 1. 
 

 

 

 

 

 

 

 

 

 

 

 

  



CS 2506 Computer Organization II  Midterm 

B 6 

5. [10 points]  Consider the pipeline design with interstage buffers shown on the Supplement.  Suppose that the following 

instructions are currently in the indicated stages of the pipeline:  

 
                         # stage 

sw    $s4, 24($t1)       #     4 

lw    $t2,  8($t5)       #     3 

add   $t4, $t7, $t3      #     2 

 

Explain what could go wrong when the add instruction is decoded (in stage 2) if our pipeline design did not use the 

interstage buffers to manage the control signals. 

 

During the decoding of ADD, the following control signals will be set: 

 

Signal Value Effect 

RegDst 1 Write-to register will be [15:11] 

Branch 0 No branch will occur 

MemRead 0 No memory read will occur 

MemWrite 0 A memory write will be attempted 

MemtoReg 0 ALU result is sent to the Register unit 

ALUop signal an add ALU will add 

ALUSrc 0 ALU will use the second register instead of the immediate 

RegWrite 1 A register write will occur 

 

 

AND, those control signal values would immediately be sent to the following pipeline stages.  So, 

the question is:  what unfortunate effects would this cause, for instructions that are further along 

in the pipeline, during this clock cycle? 

 

For LW in the EX stage: 

 ALU will use the wrong operand when computing the address to read from 

 

For SW in the MEM stage: 

 No write to data memory will be attempted. 

 

The fact that the register write will be affected isn't relevant, since neither LW nor SW will 

attempt a register write from their current pipeline stages.  Of course, this could very well have 

an effect on the unknown instruction, if any, that's currently in stage 5. 
 

 

  



CS 2506 Computer Organization II  Midterm 

B 7 

6. [10 points]  Suppose the following instructions are in the synchronized pipelined MIPS32 datapath, as shown on the 

Supplement: 
 
                         # stage 

add   $t3, $t1, $t2      #     5 

and   $s4, $s1, $s2      #     4 

or    $t2, $t1, $t2      #     3 

sub   $t4, $s4, $t1      #     2 

 

Now, we have a dependency between the and and the sub instructions, because sub needs the value that and writes into 

register $s4.  Will the sub instruction receive the correct value from $s4?  Explain. 

 

No. The AND instruction will not write to $s4 until AND reaches stage 5.  Therefore, the SUB 

instruction will read a "stale" value from $s4 while SUB is in stage 2. 

 

 

 

 

 

  

 

For questions 7 and 8: 

 

Suppose there is a pipeline design (not the MIPS32 pipeline) that uses 6 stages and has an instruction latency of 900ps.  That is, 

every instruction takes 900ps to go through the pipeline.  The design also avoids the need for any stalls. 

 

7. [10 points] What must be the clock cycle length for this design?  Explain. 

 

Each stage will take exactly one clock cycle to complete its actions, so the cycle length must equal 

the instruction latency divided by the number of stages: 

 

150ps 

 

There were many strange answers here, like multiplying the latency times the number of stages.  

As the questions states, the instruction latency is how long an instruction takes to go through the 

pipeline, not how long an instruction takes to complete one stage. 
 

8. [10 points] A new pipeline design is being proposed.  That pipeline would have 4 stages and an instruction latency of 

800ps.  Could this new design offer better performance than the original design described above?  Explain. 

 

Performance is determined by instruction throughput; that is determined by the cycle length, but a 

correct answer must address throughput.  The number of stages and the instruction latency are 

irrelevant.. 

 

For the new design, the cycle length would be 200ps. 

 

For the original pipeline, throughput would (ideally) be 1 instruction every 150ps. 

For the new design, the throughput would (ideally) be 1 instruction every 200ps. 

 

So, the new design offers worse performance. 
  



CS 2506 Computer Organization II  Midterm 

B 8 

For questions 9 and 10: 

 

We are interested in the performance of two computers, the Primus and the Secundus, both of which execute the same machine 

code.  

  
9. [10 points] A particular benchmark requires executing 8x1011 machine instructions (on each computer).  Analysis of the 

instructions that would be executed reveals that the average CPI is 5.6 for the Primus, and 4.9 for the Secundus.  From the 

given information, what can you conclude about the relative performance of the benchmark on the two computers?  

Explain. 

 

 

To make a comparison, we need to compute the program execution time for each machine. 

 

To compute the program execution time, we would need to know the cycle length (or the clock 

frequency). 

 

We do not, so we cannot reach any conclusion about the relative performance. 
 

 

That's really all that is relevant… you are not given enough information to determine the execution 

times, and therefore cannot reach any conclusions about the relative performance.   

 
  



CS 2506 Computer Organization II  Midterm 

B 9 

10. [10 points] Another benchmark takes 100 seconds to execute on the Primus.  A proposed hardware redesign will improve 

the execution time for memory access instructions on the Primus by 20% (e.g., by a factor of 1.2).  The claim is made that 

this improvement will reduce the execution time of the benchmark on the Primus by 20%.  If that is true, how much time 

must the benchmark time have spent on memory access instructions, running on the original hardware?  Justify your 

conclusion. 

 

Let X be the time in seconds spent on memory accesses with the original hardware.  Then Amdahl's 

Law implies that, with a 20% improvement: 

 

Taking the clumsy phrasing in the question literally: 

 

80 = (100 – X) + X/1.2 

 

X – X / 1.2 = 100 – 80 = 20 

 

1.2X – X = 20 * 1.2 

 

.2X = 24 

 

X = 24 / .2 = 120s, which is impossible 
 

 

Taking the clumsy phrasing in the question correctly: 

 

80 = (100 – X) + X/1.25 

 

X – X / 1.25 = 100 – 80 = 20 

 

1.25X – X = 20 * 1.25 

 

.25X = 25 

 

X = 25 / .25 = 100s, which is unlikely but perhaps not impossible 

 

There were a number of different ways to set this up, that led to slightly different answers, 

depending on how you interpreted the phrasing of the question. 

 

It was also possible to realize that the only way that improving one aspect by 20% could also 

improve overall performance by the same amount would be if that one aspect (memory accesses in 

this case) is the only thing the program does… 
 

 

 

 


