
CS 2506 Computer Organization II Midterm

A 1

Instructions:

 Print your name in the space provided below.

 This examination is closed book and closed notes, aside from the permitted one-page formula sheet.

 No calculators or other computing devices may be used. The use of any such device will be interpreted as an

indication that you are finished with the test and your test form will be collected immediately.

 Answer each question in the space provided. If you need more space to answer a question, you are probably

thinking about it the wrong way.

 If you want partial credit, justify your answers, even when justification is not explicitly required.

 There are 6 questions, some with multiple parts, priced as marked. The maximum score is 100.

 When you have completed the test, sign the pledge at the bottom of this page, sign your fact sheet, and turn in

the test and fact sheet.

 Note that failing to return this test, and discussing its content with a student who has not taken it are violations

of the Honor Code.

Do not start the test until instructed to do so!

Solutions are in blue. Commentary and explanations are in green.

Name Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2506 Computer Organization II Midterm

A 2

xkcd.com

CS 2506 Computer Organization II Midterm

A 3

1. The single-cycle MIPS datapath design used one stage with a clock cycle of 800 ps. The MIPS pipeline had five stages.

The pipelined version achieved better performance than the single-cycle version by improving instruction throughput, but

it did not achieve the theoretically-best speedup of 5.

a) [8 points] Explain what the designers of the MIPS pipeline would have needed to accomplish in order to achieve that

theoretically-best speedup. (This is not a question about detailed hardware issues.)

The inherent pipeline throughput is one instruction per clock cycle, so they needed a design that

would have a clock cycle 1/5 as long as that of the SCD design, or 160ps.

With both designs, one instruction is completed per clock cycle (once the pipeline is "hot"). So,

the speedup is determined by the ratio of the cycle length for the SCD design and the cycle

length for the pipeline design.

b) [8 points] What information do we have about the actual hardware the MIPS pipeline designers used that indicates

why they could not achieve the result you described in the previous part.

We are told that the memory access stages and the ALU operation require 200ps to stabilize,

so it was not possible to lower the clock cycle further.

This is clearly about how the hardware limited the ability to reduce the clock cycle.

2. [12 points] Suppose that a program spends part of its execution time performing integer arithmetic operations, part

performing floating point operations, and part performing I/O operations. Given the advanced state of hardware for

arithmetic computations, it is not likely we can make much improvement with respect to that. However, we may be able to

speed up the I/O operations.

If it were possible to speed up I/O operations by a factor of 3, what percentage of the program's original execution time

must it have spent on I/O operations in order to reduce the program's execution time to 2/3 of its original time?

Use Amdahl's Law to justify your answer.

Suppose that the original execution time was T, and the time spent on I/O operations was x; then

the time spent on other operations was T - x. Using Amdahl's Law, assuming we can speed up I/O

operations by a factor of 3, we need to satisfy the equation:

2T x
=T -x+

3 3

Solving for x, we get that x must be T/2, so the program must spend 50% of its time on I/O.

There are other ways to set up a formula from Amdahl's Law; many solutions used separate

variables for integer arithmetic, floating-point arithmetic, and I/O, which is perfectly valid.

OTOH, everything but I/O comes under the heading of "not affected" by the change.

CS 2506 Computer Organization II Midterm

A 4

3. Suppose that a buggy implementation of the MIPS data path miswires the selection of the source for the Write data input

to the Data Memory unit as shown below:

Everything else in the datapath is implemented as shown on the diagram in the Supplement. All the control signals would

be set as discussed in class. For each question below, we will assume that registers and memory locations hold the values

shown in the tables above.

a) [8 points] What value would be stored in the Data memory, and at what address, if the following instruction was

executed? Justify your answer.

sw $t2, 1000($t1)

The error means that the sign-extended immediate from the instruction (1000) will be written

into data memory, at the usual address ($t1 + 1000) for sw.

So, the value 1000 will be written at the address 3000.

The hardware error affects nothing except what is sent to the Write date port on the Data

memory unit (sign-extended immediate instead of the value from $t2). The address calculation

proceeds normally, and the question states that all control signals are set normally as well.

b) [8 points] What value would be stored in the register $t1 if the following instruction was executed?

lw $t1, 1000($t0)

The error only affects sw instructions, since it only affects what value is sent to the Write

data port on the Data memory unit.

So, the lw instruction will proceed normally, and store the value Mem[$t0 + 1000] ==

Mem[2000] == 20 into the register $t1.

Register value
$t0 1000

$t1 2000

$t2 3000

Address value
0 segfault

1000 10

2000 20

3000 30

4000 40

5000 50

6000 60

7000 70

CS 2506 Computer Organization II Midterm

A 5

4. In our single-cycle processor design, the instruction with the longest latency is the lw instruction, which takes 800ps. This

causes the overall clock cycle time to also become 800ps. To reduce the latency of the lw instruction and, therefore,

reduce the cycle time, one option is to remove the register+immediate addressing mode from all memory-access

instructions (including the sw instruction).

That is, we would have these instructions

lw $rt, ($rs) # GPR[rt] = Mem[GPR[rs]]

sw $rt, ($rs) # Mem[GPR[rs]] = GPR[rt]

but not these instructions

lw $rt, imm($rs) # GPR[rt] = Mem[GPR[rs] + imm]

sw $rt, imm($rs) # Mem[GPR[rs] + imm] = GPR[rt]

By eliminating the address computation step from memory-access instructions, we would reduce the latency for lw and

sw, and so we could reduce clock cycle time to 600ps. However, this would require using an additional instruction addi

to compute the memory address before each lw or sw instruction that previously specified an immediate value that wasn't

zero (i.e., we don't need to add if the immediate is zero). The current datapath design can actually execute the addi

instruction without any further modifications, so the need for that instruction would not, in itself, be a problem.

a) [10 points] Assume that in a typical program, memory-access instructions account for 40% of all executed

instructions. For simplicity, also assume that all memory-access instructions specify immediate values that are not

zero.

Quantitatively explain why removing the register+immediate addressing mode would be a bad idea. (That is, make a

precise argument with numeric content.)

A program that required executing I instructions before will now require executing 1.4I

instructions, due to the additional addi instructions needed. For that program:

Old Time = 800×Ips

  New Time = 1.4 600 Ips=840 Ips

Since the new time is greater, the change would degrade performance.

There were many ways to set this up. You could use Amdahl's Law to get the execution time

after the change. Effectively, the change speeds up non-memory-access instructions from

800ps to 600ps (or by a factor of 4/3), and it slows down memory-access instructions from

800ps to 1200ps (or by a factor of 2/3). So:

non-memory-access memory-access

after

before before

T T
T = +

4 /3 2/3
3 3

= (0.6T)+ (0.4T)
4 2
3 3

= (0.6)(800I)+ (0.4)(800I)
4 2
3 3

= (480I)+ (320I) = (360+480)I =840I
4 2

CS 2506 Computer Organization II Midterm

A 6

b) [10 points] What is the maximum percentage of executed instructions that could be memory-access instructions, in

order for removing the register+immediate addressing mode to be a good idea?

Let the percentage of memory-access instructions be x. To achieve a better execution time,

we would need to satisfy:

800I> (1+x)600I

Solving this yields x < 1/3, so there could not be more than 33% memory-access instructions.

Again, this can be set up in other ways. Taking the Amdahl's Law setup shown earlier, let x

be the percentage of memory-access instructions in a program. Then we have:

non-memory-access memory-access

after

before before

T T
T = +

4 /3 2/3
3 3

= (1-x)(T)+ (x)(T)
4 2

=(1-x)(600I)+(x)(1200I)

= (600-600x+1200x)I =600(1+x)I

We want this to be less than the original execution time, so:

600(1+x)I < 800I

CS 2506 Computer Organization II Midterm

A 7

5. Recall the formats for the R-type and I-type MIPS machine instructions:

a) [8 points] The design of these MIPS machine instructions makes the hardware for handling register reads simpler than

the hardware for handling register writes. Explain why. Be specific.

For R-type instructions, the destination register is specified by bits 15:11, but for I-type

instructions it's specified by bits 20:16.

On the other hand, for both formats the first read register specified by bits 25:21 and the

second read register (if applicable) is specified by bits 20:16.

So a choice has to be made to choose the correct bits to specify the destination register, but

not for either read register.

The question was clearly about how the design of the machine instructions related to the

handling of register reads and register writes, NOT about the difference between executing

register reads and register writes in the broader sense. Many answers ignored the issue of

the machine instruction formats, and discussed irrelevant issues. Other answers discussed

efficiency, which was also not related to the machine instruction format.

b) [8 points] What hardware component and control signal in the single cycle datapath design are needed because of the

fact described in part a)? Be specific.

The difference noted above is why we must have the RegDst signal and the MUX it controls.

Nothing else is relevant to the given question.

We DO need RegWrite for register writes, but not for register reads, but that has nothing to

do with the instruction formats.

We DO need other hardware for register writes (ALU to compute values, Data memory for lw

to read data values, MemtoReg and its MUX, etc) that is not needed for register reads, but

that's not a side-effect of the machine instruction format; it's a side-effect of the logic of

execution.

R funct shamt rd rt rs 0 0 0 0 0 0

16-bit immediate rt rs op I

31 30 29 28 27 26 5 4 3 2 1 0 25 24 23 22 21

31 30 29 28 27 26 25 24 23 22 21 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

20 19 18 17 16

20 19 18 17 16

15 14 13 12 11 10 9 8 7 6

CS 2506 Computer Organization II Midterm

A 8

6. Suppose that when a beq instruction is executed the control signals RegDst, MemRead, MemtoReg, MemWrite,

RegWrite , ALUSrc and Jump are set to values that would be correct if an R-format instruction were being executed.

And, suppose that the Branch and ALUOp signals are set properly (for a beq instruction). Suppose the following

instruction was executed:

beq $t3, $t1, btarg # btarg is the label for some instruction

a) [6 points] Would the decision of whether to take the branch be made correctly? Explain why or why not.

RegDst and MemtoReg are don't-care for beq; MemRead, MemWrite and Jump should be 0 for

both R-type and beq. ALUSrc should be 1 for R-type and beq. So those are all OK.

Branch will be set to 1, and ALUop will tell the ALU to subtract. Therefore, the AND gate will

receive the proper signals, and the decision whether to take the branch will be made correctly.

The question talks about the settings of control signals, and so should your answer. One

common flaw was to not say anything explicit about the don't-care signals, or the ones that are

the same for both beq and R-type instructions.

b) [5 points] Could any unintended changes be made to value(s) in Data memory? If so, describe what could happen. If

not, explain why not.

MemWrite will be set to 0, so no changes will be made to Data memory.

You need to explain WHY Data memory cannot be changed in this case, and that is due to

exactly one thing: MemWrite == 0.

c) [5 points] Could any unintended changes be made to value(s) in registers? If so, describe what could happen. If not,

explain why not.

Unfortunately, RegWrite will be set to 1.

Since MemtoReg will be set to 0, the ALUresult ($t3 - $t1) will be passed back to the Write

data input on the register file.

Since RegDst will be set to 1, the Write register number will be specified by the high 5 bits of

the immediate field of the beq instruction… and we don't know what those are.

So, the value $t3 - $t1 will be written to SOME register.

I wanted to see three things in you answer: why a register will be written to, what will be

written there, and what register will be written to (as much as you can identify that).

