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Logic Design  

Goal: to become literate in most common concepts and terminology of digital 

electronics 

Important concepts: 

 - use abstraction and composition to implement complicated functionality with very 

simple digital electronics 

 - keep things as simple, regular, and small as possible 

Things we will not explore: 

 - physics 

 - chip fabrication 

 - layout 

 - tools for chip specification and design 
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Motivation  

Consider the external view of addition: 

What kind of circuitry would go into the "black box" adder to produce the correct results? 

 

How would it be designed?  What modular components might be used? 

Adder 

??? 

x + y 

y 

x 

Error? 
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Basic Logic Gates 

Fundamental building blocks of circuits; mirror the standard logical operations: 

OR gate AND gate NOT gate 

A Out 

0 1 

1 0 

A B Out 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

A B Out 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Note the outputs of the AND and OR gates are commutative with respect to the inputs. 

Multi-way versions of the AND and OR gates are commonly assumed in design. 
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Additional Common Logic Gates 

NAND gate XOR gate 

A B Out 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

A B Out 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

NOR gate 

A B Out 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

XNOR gate 
A B Out 

0 0 1 

0 1 0 

1 0 0 

1 1 1 
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Combinational and Sequential Circuits 

A combinational circuit is one with no "memory".  That is, its output depends only upon 

the current state of its inputs, and not at all on the current state of the circuit itself. 

A sequential circuit is one whose output depends not only upon the current state of its 

inputs, but also on the current state of the circuit itself. 

For now, we will consider only combinational circuits. 
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From Function to Combinational Circuit 

Given a simple Boolean function, it is relatively easy to design a circuit composed of the 

basic logic gates to implement the function: 
:    x yz x y  

This circuit implements the exclusive or (XOR) function, often represented as a single 

logic gate: 
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Sum-of-Products Form 

A Boolean expression is said to be in sum-of-products form if it is expressed as a sum of 

terms, each of which is a product of variables and/or their complements: 

baba 

It's relatively easy to see that every Boolean expression can be written in this form. 

Why? 

The summands in the sum-of-products form are called minterms.  

 - each minterm contains each of the variables, or its complement, exactly once 

 - each minterm is unique, and therefore so is the representation (aside from order) 
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Sum-of-Products Form 

Given a truth table for a Boolean function, construction of the sum-of-products 

representation is trivial: 

 - for each row in which the function value is 1, form a product term involving all the 

variables, taking the variable if its value is 1 and the complement if the variable's 

value is 0 

 - take the sum of all such product terms 

x y z F 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

x y z 

x y z 

x y z 

x y z 

F x y z x y z x y z x y z           
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Equivalence 

     

( , , )                                           Given

               Idempotence, twice

     Commutativi

F x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

           

                 

                 

     

ty, Associativity

                             Commutativity, Distributivity

1 1 1                                                           Boundedness

  

x x y z y y x z z z x y

y z x z x y

x y x z y z

           

        

                                                                        Boundedness, Commutativity

( , , )G x y z
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Efficiency of Expression 

While the sum-of-products form is arguably natural, it is not necessarily the simplest way 

form, either in: 

 - number of gates (space) 

 - depth of circuit (time) 

zyxzyx

zyxzyxzyxF



),,(

( , , )G x y z x y y z x z     
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1-bit Half Adder 

Let's make a 1-bit adder (half adder)… we can think of it as a Boolean function with two 

inputs and the following defining table: 
A B Sum 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Here's the resulting circuit. 

It's equivalent to the XOR circuit 

seen earlier. 

 

But… in the final row of the truth 

table above, we've ignored the fact 

that there's a carry-out bit. 
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Dealing with the Carry 

The carry-out value from the 1-bit sum can also be expressed via a truth table. 

However, the result won't be terribly useful unless we also take into account a carry-in. 

A B Cin Sum Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

The resulting sum-of-products expressions are: 

inininin CBACBACBACBASum 

 
out in in in in

in in in in

in in

in in

C A B C A B C A B C A B C

A B C A B C A B C C

A B C A B C A B

A C B C A B

           

         

       

     
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1-bit Full Adder 

The expressions for the sum and carry lead to the following unified implementation: 

inin

inin

CBACBA

CBACBASum





out in inC A B A C B C     
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1-bit Full Adder as a Module 

When building more complex circuits, it is useful to consider sub-circuits as individual, 

"black-box" modules.  For example: 

inin

inin

CBACBA

CBACBASum





out in inC A B A C B C     
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Chaining a 4-bit Adder 

An 4-bit adder built by 

chaining 1-bit adders: 

This has one serious shortcoming.  The carry bits must ripple 

from top to bottom, creating a lag before the result will be 

obtained for the final sum bit and carry. 
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Carry-Lookahead Adder 

Perhaps surprisingly, it's possible to compute all the carry bits before any sum bits are 

computed... and that leads to a faster adder design: 

Why is this faster than the ripple-carry approach? 
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Latency 

The answer lies in the concept of gate latency. 

Each logic gate takes a certain amount of time (usually measured in picoseconds) to 

stabilize on the correct output... we call that the latency of the gate. 

 

For simplicity, we'll assume in this course that all gates (except inverters) have the same 

latency, and that inverters are so fast they can be igored. 

 

Then, the idea is that the latency of a circuit can be measured by the maximum number of 

gates a signal passes through within the circuit... called the depth of the circuit.  

 

So, the 1-bit full adder we saw earlier has a depth of 2. 
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Carry-Lookahead Adder Latency 

Without going into details: 

How does that compare to the ripple-carry approach? 

Depth is 3 gates 

Depth is 2 gates 

Total depth is 5 gates 
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Ripple-carry Latency 

A 4-bit ripple-carry design would have 4 1-bit full adders, and we've seen that each of 

those has a depth of 2 gates. 

 

But those adders fire sequentially, so running one after the other would entail a total depth 

of 8 gates. 

So, the ripple-carry design would be 1.6 times as "deep" and it's not unreasonable to say it 

would take about 1.6 times as long to compute the result.  

Just how you'd implement the computation of those carry bits is an interesting question... 
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Carry-Lookahead Logic 

Let's look at just how the carry bits depend on the summand bits: 

c4 c3  c2  c1  c0 

   a3  a2  a1  a0 

   b3  b2  b1  b0 

   ------------- 

   s3  s2  s1  s0 

It's clear that c1 = 1 if and only if at least two of the bits in the previous column are 1. 

Since this relationship holds for every carry bit (except c0), we have the following general 

Boolean equation for carry bits: 

We will allow for a carry-in in 

the low-order position (c0). 

1i i i i i i ic a b a c b c      

(Note that • represents AND and + represents OR.) 
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Now, this relationship doesn't seem to help until we look at it a bit more deeply:  

1 ( )i i i i i i i i i i i ic a b a c b c a b a b c           

Carry-Lookahead Logic 

i i i

i i i

g a b

p a b

 

 

1 0 0 0

2 1 1 1 1 1 0 0 0 1 1 0 1 0 0( )

c g p c

c g p c g p g p c g p g p p c

  

             

If we define 

then we get the following relationships: 

Now, we can calculate all of the gi and pi terms at once, from the bits of the two 

summands, and c0 will be given, so we can compute c1 and c2 before we actually do the 

addition! 
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Finally, here's how we can calculate c3 and c4:  

Carry-Lookahead Logic 

3 2 2 2

2 2 1 1 0 1 0 0

2 2 1 2 1 0 2 1 0 0

( )

c g p c

g p g p g p p c

g p g p p g p p p c

  

       

         

So, we have the necessary logic to implement the 4-bit Carry Lookahead unit for our 4-bit 

Carry Lookahead Adder:  

4 3 3 3

3 3 2 2 1 2 1 0 2 1 0 0

3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

( )

c g p c

g p g p g p p g p p p c

g p g p p g p p p g p p p p c

  

           

              
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Carry-Lookahead Logic 

i i i

i i i

g a b

p a b

 

 

1 0 0 0

2 1 1 0 1 0 0

3 2 2 1 2 1 0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

c g p c

c g p g p p c

c g p g p p g p p p c

c g p g p p g p p p g p p p p c

  

     

         

              
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Abstraction 

The gi and pi bits represent an abstract view of how carry bits are generated and 

propagate during addition: 

i i ig a b 

i i ip a b 

generate bit for i-th column 

adding the summand bits generates a carry-out bit 

iff both summand bits are 1 

propagate bit for i-th column 

if ci = 1 (the carry-out bit from the previous 

column), there's a carry-out into the next column iff 

at least one of the summand bits is 1 
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Abstraction 

So, here's why the formulas we've derived make sense intuitively: 

1 0 0 0c g p c  

4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0c g p g p p g p p p g p p p p c              

c1 is 1 iff: 

c0 was 1 and column 0 propagated it 

or 

column 0 generated a carry-out 

c4 is 1 iff: 

c0 was 1  and columns 0 to 3 propagated it, or 

column 0 generated a carry-out and columns 1 to 3 

propagated it, or 

column 1 generated a carry-out and columns 2 to 3 

propagated it, or 

column 2 generated a carry-out and column 3 

propagated it, or 

column 3 generated a carry-out 


