
Digital Logic

 Computer Organization

1

CS@VT ©2005-2015 McQuain

Logic Design

Goal: to become literate in most common concepts and terminology of digital

electronics

Important concepts:

 - use abstraction and composition to implement complicated functionality with very

simple digital electronics

 - keep things as simple, regular, and small as possible

Things we will not explore:

 - physics

 - chip fabrication

 - layout

 - tools for chip specification and design

Digital Logic

 Computer Organization

2

CS@VT ©2005-2015 McQuain

Motivation

Consider the external view of addition:

What kind of circuitry would go into the "black box" adder to produce the correct results?

How would it be designed? What modular components might be used?

Adder

???

x + y

y

x

Error?

Digital Logic

 Computer Organization

3

CS@VT ©2005-2015 McQuain

Basic Logic Gates

Fundamental building blocks of circuits; mirror the standard logical operations:

OR gate AND gate NOT gate

A Out

0 1

1 0

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

Note the outputs of the AND and OR gates are commutative with respect to the inputs.

Multi-way versions of the AND and OR gates are commonly assumed in design.

Digital Logic

 Computer Organization

4

CS@VT ©2005-2015 McQuain

Additional Common Logic Gates

NAND gate XOR gate

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

NOR gate

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

XNOR gate
A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Digital Logic

 Computer Organization

5

CS@VT ©2005-2015 McQuain

Combinational and Sequential Circuits

A combinational circuit is one with no "memory". That is, its output depends only upon

the current state of its inputs, and not at all on the current state of the circuit itself.

A sequential circuit is one whose output depends not only upon the current state of its

inputs, but also on the current state of the circuit itself.

For now, we will consider only combinational circuits.

Digital Logic

 Computer Organization

6

CS@VT ©2005-2015 McQuain

From Function to Combinational Circuit

Given a simple Boolean function, it is relatively easy to design a circuit composed of the

basic logic gates to implement the function:
: x yz x y

This circuit implements the exclusive or (XOR) function, often represented as a single

logic gate:

Digital Logic

 Computer Organization

7

CS@VT ©2005-2015 McQuain

Sum-of-Products Form

A Boolean expression is said to be in sum-of-products form if it is expressed as a sum of

terms, each of which is a product of variables and/or their complements:

baba

It's relatively easy to see that every Boolean expression can be written in this form.

Why?

The summands in the sum-of-products form are called minterms.

 - each minterm contains each of the variables, or its complement, exactly once

 - each minterm is unique, and therefore so is the representation (aside from order)

Digital Logic

 Computer Organization

8

CS@VT ©2005-2015 McQuain

Sum-of-Products Form

Given a truth table for a Boolean function, construction of the sum-of-products

representation is trivial:

 - for each row in which the function value is 1, form a product term involving all the

variables, taking the variable if its value is 1 and the complement if the variable's

value is 0

 - take the sum of all such product terms

x y z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

x y z

x y z

x y z

x y z

F x y z x y z x y z x y z

Digital Logic

 Computer Organization

9

CS@VT ©2005-2015 McQuain

Equivalence

(, ,) Given

 Idempotence, twice

 Commutativi

F x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

ty, Associativity

 Commutativity, Distributivity

1 1 1 Boundedness

x x y z y y x z z z x y

y z x z x y

x y x z y z

 Boundedness, Commutativity

(, ,)G x y z

Digital Logic

 Computer Organization

10

CS@VT ©2005-2015 McQuain

Efficiency of Expression

While the sum-of-products form is arguably natural, it is not necessarily the simplest way

form, either in:

 - number of gates (space)

 - depth of circuit (time)

zyxzyx

zyxzyxzyxF

),,(

(, ,)G x y z x y y z x z

Digital Logic

 Computer Organization

11

CS@VT ©2005-2015 McQuain

1-bit Half Adder

Let's make a 1-bit adder (half adder)… we can think of it as a Boolean function with two

inputs and the following defining table:
A B Sum

0 0 0

0 1 1

1 0 1

1 1 0

Here's the resulting circuit.

It's equivalent to the XOR circuit

seen earlier.

But… in the final row of the truth

table above, we've ignored the fact

that there's a carry-out bit.

Digital Logic

 Computer Organization

12

CS@VT ©2005-2015 McQuain

Dealing with the Carry

The carry-out value from the 1-bit sum can also be expressed via a truth table.

However, the result won't be terribly useful unless we also take into account a carry-in.

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The resulting sum-of-products expressions are:

inininin CBACBACBACBASum

out in in in in

in in in in

in in

in in

C A B C A B C A B C A B C

A B C A B C A B C C

A B C A B C A B

A C B C A B

Digital Logic

 Computer Organization

13

CS@VT ©2005-2015 McQuain

1-bit Full Adder

The expressions for the sum and carry lead to the following unified implementation:

inin

inin

CBACBA

CBACBASum

out in inC A B A C B C

Digital Logic

 Computer Organization

14

CS@VT ©2005-2015 McQuain

1-bit Full Adder as a Module

When building more complex circuits, it is useful to consider sub-circuits as individual,

"black-box" modules. For example:

inin

inin

CBACBA

CBACBASum

out in inC A B A C B C

Digital Logic

 Computer Organization

15

CS@VT ©2005-2015 McQuain

Chaining a 4-bit Adder

An 4-bit adder built by

chaining 1-bit adders:

This has one serious shortcoming. The carry bits must ripple

from top to bottom, creating a lag before the result will be

obtained for the final sum bit and carry.

Digital Logic

 Computer Organization

16

CS@VT ©2005-2015 McQuain

Carry-Lookahead Adder

Perhaps surprisingly, it's possible to compute all the carry bits before any sum bits are

computed... and that leads to a faster adder design:

Why is this faster than the ripple-carry approach?

Digital Logic

 Computer Organization

17

CS@VT ©2005-2015 McQuain

Latency

The answer lies in the concept of gate latency.

Each logic gate takes a certain amount of time (usually measured in picoseconds) to

stabilize on the correct output... we call that the latency of the gate.

For simplicity, we'll assume in this course that all gates (except inverters) have the same

latency, and that inverters are so fast they can be igored.

Then, the idea is that the latency of a circuit can be measured by the maximum number of

gates a signal passes through within the circuit... called the depth of the circuit.

So, the 1-bit full adder we saw earlier has a depth of 2.

Digital Logic

 Computer Organization

18

CS@VT ©2005-2015 McQuain

Carry-Lookahead Adder Latency

Without going into details:

How does that compare to the ripple-carry approach?

Depth is 3 gates

Depth is 2 gates

Total depth is 5 gates

Digital Logic

 Computer Organization

19

CS@VT ©2005-2015 McQuain

Ripple-carry Latency

A 4-bit ripple-carry design would have 4 1-bit full adders, and we've seen that each of

those has a depth of 2 gates.

But those adders fire sequentially, so running one after the other would entail a total depth

of 8 gates.

So, the ripple-carry design would be 1.6 times as "deep" and it's not unreasonable to say it

would take about 1.6 times as long to compute the result.

Just how you'd implement the computation of those carry bits is an interesting question...

Digital Logic

 Computer Organization

20

CS@VT ©2005-2015 McQuain

Carry-Lookahead Logic

Let's look at just how the carry bits depend on the summand bits:

c4 c3 c2 c1 c0

 a3 a2 a1 a0

 b3 b2 b1 b0

 s3 s2 s1 s0

It's clear that c1 = 1 if and only if at least two of the bits in the previous column are 1.

Since this relationship holds for every carry bit (except c0), we have the following general

Boolean equation for carry bits:

We will allow for a carry-in in

the low-order position (c0).

1i i i i i i ic a b a c b c

(Note that • represents AND and + represents OR.)

Digital Logic

 Computer Organization

21

CS@VT ©2005-2015 McQuain

Now, this relationship doesn't seem to help until we look at it a bit more deeply:

1 ()i i i i i i i i i i i ic a b a c b c a b a b c

Carry-Lookahead Logic

i i i

i i i

g a b

p a b

1 0 0 0

2 1 1 1 1 1 0 0 0 1 1 0 1 0 0()

c g p c

c g p c g p g p c g p g p p c

If we define

then we get the following relationships:

Now, we can calculate all of the gi and pi terms at once, from the bits of the two

summands, and c0 will be given, so we can compute c1 and c2 before we actually do the

addition!

Digital Logic

 Computer Organization

22

CS@VT ©2005-2015 McQuain

Finally, here's how we can calculate c3 and c4:

Carry-Lookahead Logic

3 2 2 2

2 2 1 1 0 1 0 0

2 2 1 2 1 0 2 1 0 0

()

c g p c

g p g p g p p c

g p g p p g p p p c

So, we have the necessary logic to implement the 4-bit Carry Lookahead unit for our 4-bit

Carry Lookahead Adder:

4 3 3 3

3 3 2 2 1 2 1 0 2 1 0 0

3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

()

c g p c

g p g p g p p g p p p c

g p g p p g p p p g p p p p c

Digital Logic

 Computer Organization

23

CS@VT ©2005-2015 McQuain

Carry-Lookahead Logic

i i i

i i i

g a b

p a b

1 0 0 0

2 1 1 0 1 0 0

3 2 2 1 2 1 0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

c g p c

c g p g p p c

c g p g p p g p p p c

c g p g p p g p p p g p p p p c

Digital Logic

 Computer Organization

24

CS@VT ©2005-2015 McQuain

Abstraction

The gi and pi bits represent an abstract view of how carry bits are generated and

propagate during addition:

i i ig a b

i i ip a b

generate bit for i-th column

adding the summand bits generates a carry-out bit

iff both summand bits are 1

propagate bit for i-th column

if ci = 1 (the carry-out bit from the previous

column), there's a carry-out into the next column iff

at least one of the summand bits is 1

Digital Logic

 Computer Organization

25

CS@VT ©2005-2015 McQuain

Abstraction

So, here's why the formulas we've derived make sense intuitively:

1 0 0 0c g p c

4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0c g p g p p g p p p g p p p p c

c1 is 1 iff:

c0 was 1 and column 0 propagated it

or

column 0 generated a carry-out

c4 is 1 iff:

c0 was 1 and columns 0 to 3 propagated it, or

column 0 generated a carry-out and columns 1 to 3

propagated it, or

column 1 generated a carry-out and columns 2 to 3

propagated it, or

column 2 generated a carry-out and column 3

propagated it, or

column 3 generated a carry-out

