
CS 2506 Computer Organization II Test 1

A 1

Instructions:

 Print your name in the space provided below.

 This examination is open book, but no other resources are allowed. No calculators or other computing devices

may be used. The use of any such device will be interpreted as an indication that you are finished with the test

and your test form will be collected immediately.

 Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly

indicate that and label the continuation with the question number.

 If you want partial credit, justify your answers, even when justification is not explicitly required.

 There are 6 questions, some with multiple parts, priced as marked. The maximum score is 100.

 When you have completed the test, sign the pledge at the bottom of this page and turn in the test.

 Note that either failing to return this test, or discussing its content with a student who has not taken it is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2506 Computer Organization II Test 1

A 2

xkcd.com

CS 2506 Computer Organization II Test 1

A 3

1. [6 points] A processor with a clock rate of 2.0 GHz executes 4 billion machine instructions in 3 seconds. What is the

average CPI of the instructions that were executed? Justify your conclusion.

From the given information, there are 3 x 2.0 x 10^9, or 6.0 x 10^9 clock cycles in 3 seconds.

So, the average CPI for this sequence of instructions would be

6.0 x 10^9 / 4.0 x 10^9 = 1.5 cycles per instruction

2. Suppose that running a program on a system requires executing I instructions, consisting of 30% integer add instructions,

20% integer multiply instructions, and 50% other instructions. With the current hardware, integer add instructions take 4

clock cycles, integer multiply instructions take 2 clock cycles, and each of the other instructions take 1 clock cycle.

a) [10 points] What is the total time (in clock cycles) needed to execute this program (in terms of I)? Justify your

conclusion.

#ClockCycles = 0.30I x 4 + 0.20I x 2 + 0.50I x 1 = (1.2 + 0.4 + 0.5)I = 2.1I

b) [6 points] When this program is executed, what fraction* of the execution time is spent performing integer multiply

instructions? Justify your conclusion.

The number of clock cycles spent on integer multiplication is 0.4I, and the total number of

clock cycles is 2.1I, so the fraction is

0.4I / 2.1I = 4/21

(which is about 19%).

* Use fractions (rational numbers), not decimal representation when you work this out.

CS 2506 Computer Organization II Test 1

A 4

c) [10 points] Suppose it's possible to speed up the execution of integer multiply instructions by 50%, without altering

the number of cycles required for any other instructions. If that improvement is made and we executed the same

program on the improved hardware, what would be the speedup*? Justify your conclusion.

Applying Amdahl's Law, the number of cycles required would now be

Cyclesafter = Cyclesunaffected + Cyclesaffected / Speedup = 0.9I + 1.2I / 2 = 1.5I

Now, there's a question… the problem didn't say that the clock cycle length would not change

as a result of the improvement in the integer multiplication hardware. If it does, then we

don't have enough information to answer this question numerically, but we can still give an

answer.

Suppose the old clock rate is Ratebefore and the new clock rate is Rateafter. Then we know that

ExecutionTime = #cycles * CycleLength = #cycles / ClockRate

So we'd have:

ExecutionTimebefore = 2.1I / Ratebefore

ExecutionTimeafter = 1.5I / Rateafter

And, so the speedup would be

ExecutionTimebefore / ExecutionTimeafter = (2.1I / Ratebefore) / (1.5I / Rateafter)

or

Speedup = 7 * Ratebefore / 5 * Rateafter

And, if the clock rate doesn't change, that would reduce to 7/5 (or 1.4).

CS 2506 Computer Organization II Test 1

A 5

3. Suppose a C programmer writes a C program with three functions foo(), bar() and zoo(); and a prototype MIPS

compiler generates the following assembly code for each function.

C code (pseudo-code):

int foo() {

 . . .

 x = bar (a, b);

 printf("x: %d\n", x);

 . . .

}

int bar(int a, int b) {

 x = zoo(b, a);

 // note params

 return x;

}

int zoo(int a, int b) {

 x = a + b;

 return x;

}

Assembly code (with addresses and instructions)

. . .

 foo:

. . .

0x4000 move $a0, $t0

0x4004 move $a1, $t1

0x4008 jal bar

0x400c move $a0, $v0

0x4010 li $v0, 1

0x4014 syscall

. . .

0x5000 bar: move $t0, $a0

0x5004 move $a0, $a1

0x5008 move $a1, $t0

0x500c jal zoo

0x5010 jr $ra

. . .

0x6000 zoo: add $v0, $a0, $a1

. . .

0x600c jr $ra

a) [6 points] Suppose the initial register states were as follows (the second column) before the program executed the

instruction 3a (move $a0, $t0) in foo(). Then, the program makes progress, and now it is about to execute the

instruction 3b (jal zoo) in bar(). Please write down the register states before the instruction 3b executes.

 Before 3a Before 3b

$t0 0x01 0x01

$t1 0x02 0x02

$a0 0x0 0x02

$a1 0x0 0x01

$v0 0x0 0x0

$ra 0x3200 0x400c

… (ignore the rest) … … …

b) [8 points] After running the assembly code, a C programmer found that the program did not write anything. Please

find what was wrong in the assembly code and how to fix it. (You do not need to write down new assembly code. A

detailed explanation of how to fix it is sufficient).

When jal zoo is executed, that resets $ra to 5010 for the return from zoo to bar. When zoo

executes jr $ra, execution returns to jr $ra in bar. But executing that yields an infinite loop.

We need to:

 back up the old $ra (400c) to the stack before bar executes jal zoo

 restore the old $ra (400c) from the stack to $ra before bar executes jr $ra

3b

3a

CS 2506 Computer Organization II Test 1

A 6

4. These questions refer to the simplified single-cycle MIPS32 datapath (full diagram supplied with the test). Recall that this

datapath supports the following instructions: add, sub, and, or, slt, lw, sw, beq and j.

a) [10 points] Suppose the Branch control signal, labeled 4a on the datapath diagram, was stuck-at-1. Assume the rest

of the hardware operates as designed. Which of the supported instructions would be affected, under what

circumstances, and why?

Effectively, any R-type instruction or lw or sw for which the ALU computed 0 would result in a

branch being taken, since the AND gate controlling the branch MUX would then receive two

1's. However, that would not affect the execution of the R-type instruction itself, just

produce a side-effect.

(The other instructions are unaffected.)

b) [10 points] Suppose the MemtoReg control signal, labeled 4b on the datapath diagram, was stuck-at-1. Assume the

rest of the hardware operates as designed. Which of the supported instructions would be affected, under what

circumstances, and why?

The MUX to the right of the Data memory unit will always pass the Read data value from the

Data memory unit to the Write data input on the Register file.

So, none of the R-type instructions would operate correctly (aside from the unlikely case that

the memory read was allowed and the data read from memory matched the ALU's output).

(The other instructions are unaffected.)

c) [10 points] Consider the Add unit labeled 4c on the datapath diagram. Are there any supported instruction(s), for

which this is unit not needed? (That is, are there instructions that would execute correctly, in all cases, even if this

unit was removed.) If yes, identify those instructions and explain why they do not need this unit.

The value of PC + 4 is used directly in the execution of beq and j, to compute the branch

target or jump target addresses. Since those addresses are logically necessary for the

execution of those instructions, we'd have to say they are directly affected.

On the other hand, if we didn't have the Add unit, we could never compute the address of the

next instruction at all.

If you think that's just a side-effect, you would say the current instruction is still completed

correctly (aside from beq or j).

But you could also argue that the address computation is required to logically complete the

current instruction.

CS 2506 Computer Organization II Test 1

A 7

5. [12 points] Suppose the following instruction is being executed: lw $t1, 12($s7)

When that instruction is executed, the datapath hardware will perform some actions that are logically unnecessary for that

instruction (although they would be necessary for some other instructions). Identify two such actions, and for each explain

why the fact that the hardware performs that (unnecessary) action does not cause any difficulties.

There are a number of irrelevant actions, including:

Computation of the branch target address (shifter, adder, zero signal)

 shifting the sign-extended immediate bits

 adding that to PC + 4

 setting the Zero signal

Computation of the jump target address (shifter, concatenation)

 shifting Instr[25:0]

 concatenating that with PC+4[31:28]

Sending the output from Read data 2 to the Write data port on the Data memory unit

Sending the ALU output to the MUX to the right of the Data memory unit

In each case, the irrelevant action is harmless because it has no subsequent effect. For example:

 the branch target address is never used, because Branch will be set to 0 whenever we're

executing a lw.

 the jump target address is never used, because Jump will be set to 0 whenever we're

executing a lw.

 the value on the Write data input of the Data memory unit is never used, because

MemWrite will be set to 0 whenever we are executing a lw.

 the MUX to the right of the Data memory unit never sends the ALU result anywhere,

because MemtoReg will be set to 1 whenever we're executing lw.

CS 2506 Computer Organization II Test 1

A 8

6. [12 points] Consider the following proposed instruction for the simplified single-cycle MIPS32 datapath discussed in

class:

addm ($rd), $rs, $rt # Mem[rd] = GPR[rs] + GPR[rt]

The instruction adds the values in registers $rs and $rt, and stores the result at the address in register $rd. Of course,

this could be accomplished by a sequence consisting of an add instruction and a sw instruction, but that would require

two clock cycles and an extra register for temporary storage. Supporting this new instruction would also require

modifying the internals of the Control unit to recognize the funct field for the new instruction, but assume that's easily

accomplished.

Haskell Hoo IV, who proposed the new instruction, insists that it can be added to the current datapath design (as shown on

the datapath diagram) with no changes other than to the internals of the Control unit. That is, there will be no need to add

any new hardware to the datapath, nor will there be a need for any new control signals.

If Haskell Hoo IV is correct, explain how the eight existing control signals (excluding ALUop) would need to be set.

If Haskell Hoo IV is incorrect, describe at least one hardware modification that must be made to the existing datapath in

order to support addm, and explain why that modification is necessary.

Haskell Hoo IV is incorrect. Many changes would be needed, including:

 the ability to read three register values at once

o a Read register 3 input to the register file

o a Read data 3 output from the register file

 the ability to send the ALU output value to the Write data input on Data memory

o a MUX to choose whether ALU output or Read data 2 goes to the Write data input

o a control signal for that MUX

 the ability to send the output from Read data 3 to the Address input on the Data memory

o a MUX to choose whether ALU output or Read data 3 output goes to the Address

input

o a control signal for that MUX

rt rs 000000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rd 00000 funct

