B What is make? GNU Make 1

make is a system utility for managing the build process (compilation/linking/etc).

There are various versions of make; these notes discuss the GNU make utility included on
Linux systems.

As the GNU Make manual™* says:

The make utility automatically determines which pieces of a large program
need to be recompiled, and issues commands to recompile them.

Using make yields a number of benefits, including:

- faster builds for large systems, since only modules that must be recompiled will be
- the ability to provide a simple way to distribute build instructions for a project
- the ability to provide automated cleanup instructions

*http://www.gnu.org/software/make/manual /make.pdf

CS@VT Computer Organization Il ©2005-2013 McQuain

™ Source Base GNU Make 2

The following presentation is based upon the following collection of C source files:

pgtest.c the main “driver”

TestPlace.h test harness for the P1lace type

TestPlace.c

TestPlaceQueue.h test harness for the P1aceQueue type
TestPlaceQueue.cC

MarkUp.h point annotation code used in automated testing
MarkUp.c

PlaceUtilities.h display code for P1ace and P1laceQueue objects

PlaceUtilities.c
PlaceQueueUtilities.h
PlaceQueueUtilities.c

Place.h structured type encapsulating GIS information
Place.c

PlaceQueue.h interface for managing a queue of P1ace objects
PlaceQueue.c

Queue.h generic queue implementation

Queue.cC

The example is derived from a programming assignment used in CS 2506 during Fall
2013.

CS@VT Computer Organization Il ©2005-2013 McQuain

| Dependencies

GNU Make 3

The C source files use the following i nclude directives related to files in the project:

pgtest.h:
TestPlace.h
TestPlaceQueue.h

TestPlace.h:
Place.h
TestPlace.c:

MarkUp.h

PlaceUtilities.h

TestPlaceQueue.c:
PlaceQueueUtilities.h
PlaceUtilities.h
MarkUp.h

PlaceUtilities.h:
Place.h

PlaceQueue.h:
Place.h
Queue.h

PlaceQueueUtilities.h:
PlaceQueue.h

PlaceQueueUtilities.c:
PlaceUtilities.h
MarkUp.h

We need to understand how the inclusions affect compilation...

CS@VT

Computer Organization Il

©2005-2013 McQuain

" Dependency Map GNU Make 4

The C source files exhibit the following dependencies (due to include directives):

pgtest.*

I —

TestPlace.~* TestPlaceQueue. *

\/\

Markup.* PlaceQueueUtilities.*

- /

PlaceUtilities.* PlaceQueue. *

—) e

Place.~* Queue.*

We need to understand the dependencies in order to define the rules make will apply.

CS@VT Computer Organization Il ©2005-2013 McQuain

. Makefiles and Rules GNU Make 5

You use a kind of script called a makefile to tell make what to do.
A simple makefile is just a list of rules of the form:
target ... : prequisites ...

recipe

Prerequisites are the files that are used as input to create the target.

A recipe specifies an action that make carries out.

CS@VT Computer Organization Il ©2005-2013 McQuain

I Defining a Simple Rule GNU Make 6

Here is a simple rule for compiling Queue. ¢ (and so producing Queue. o):

target prerequisites

A A

[| | |

|
tab!! recipe

So, if we invoke make on this rule, make will execute the command:

gcc —-std=c99 -Wall -c Queue.c

CS@VT Computer Organization Il ©2005-2013 McQuain

I Defining a More Complex Rule GNU Make 7

Here is a simple rule for compiling TestPlace. c (and so producing TestPlace.o):

Now, we have some issues:

- This doesn’t save us any rebuilding... every C file that TestPlace. o depends on
will be recompiled every time we invoke the rule for that target.

- There is a lot of redundancy in the statement of the rule... too much typing!

- What if we wanted to build for debugging? We’d need to add something (for
instance, —~ggdb3) to the recipe in every rule. That’s inefficient.

CS@VT Computer Organization Il ©2005-2013 McQuain

B Using the Dependencies GNU Make 8

We can specify targets as prerequisites, as well as C source files:

Now, if we invoke make on the target TestPlaceQueue. o:

- make examines the modification time for each direct and indirect prerequisite for
TestPlace.o

- each involved target is rebuilt, by invoking its recipe, iff that target has a prerequisite,
that has changed since that target was last built

CS@VT Computer Organization Il ©2005-2013 McQuain

. Makefile Variables GNU Make 9

We can define variables in our makefile and use them in recipes:
This would make it easier to alter the compiler options for all targets (or to change
compilers).

CS@VT Computer Organization Il ©2005-2013 McQuain

I Rules Without Prerequisites GNU Make 10

We can also define a rule with no prerequisites; the most common use is probably to define
a cleanup rule:

Invoking make on this target would cause the removal of all object and stackdump files
from the directory.

CS@VT Computer Organization Il ©2005-2013 McQuain

NA Complete Makefile GNU Make 11

Here is a complete makefile for the example project:

Computer Organization Il ©2005-2013 McQuain

NA Complete Makefile GNU Make 12

Computer Organization Il ©2005-2013 McQuain

NA Complete Makefile GNU Make 13

CsS@VT Computer Organization Il ©2005-2013 McQuain

I Running make GNU Make 14

make can be invoked in several ways, including:

make
make <target>
make —f <makefile name> <target>

In the first two cases, make looks for a makefile, in the current directory, with a default
name. GNU make looks for the following names, in this order:

GNUmakefile
makefile

Makefile

If no target is specified, make will process the first rule in the makefile.

CS@VT Computer Organization Il ©2005-2013 McQuain

Examples using make GNU Make 15

Using the makefile shown above, and the source files indicated earlier:

[wdm@VMCentos64 Make]$ make pgtest

gcc —-00 -m32 -std=c99 -Wall -W -ggdb3 -c Place.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceUtilities.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c MarkUp.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlace.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 —-c Queue.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueue.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueueUtilities.c
gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlaceQueue.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c pgtest.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -o pgtest pgtest.o Place.o
PlaceQueue.o Queue.o TestPlace.o TestPlaceQueue.o MarkUp.o
PlaceUtilities.o PlaceQueueUtilities.o

[wdm@VMCentos64 Make]$

Since [hadn’t compiled anything yet, make invoked all of the rules in Makefile.

CS@VT Computer Organization Il ©2005-2013 McQuain

Examples using make

GNU Make 16

Now, I’ll modify one of the C files and run make again:

[wdm@VMCentos64 Makel]$ touch MarkUp.c

[wdm@VMCentos64 Make]$ make

gcc —00 -m32
gcc —00 -m32
gcc —00 -m32
gcc —00 -m32
gcc —00 -m32
PlaceQueue.o

PlaceUtilities.o PlaceQueueUtilities.o

-std=c99 -Wall
-std=c99 -Wall
-std=c99 -Wall
-std=c99 -Wall
-std=c99 -Wall

pgtest

-W —-ggdb3
-W —-ggdb3
-W —-ggdb3
-W —-ggdb3
-W —-ggdb3

MarkUp.c

TestPlace.c
TestPlaceQueue.c
pgtest.c

pgtest pgtest.o Place.o

Queue.o TestPlace.o TestPlaceQueue.o MarkUp.o

[wdm@VMCentos64 Make]$

The only recipes that were invoked were those for the targets that depend on MarkUp. c.

CS@VT

Computer Organization Il ©2005-2013 McQuain

Examples using make GNU Make 17

Now, I’ll modify a “deeper” C file and run make again:

[wdm@VMCentos64 Make]$ touch Place.c

[wdm@VMCentos64 Make]$ make pgtest

gcc —-00 -m32 -std=c99 -Wall -W -ggdb3 -c Place.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceUtilities.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlace.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueue.c

gcc —00 —-m32 -std=c99 -Wall -W —-ggdb3 -c PlaceQueueUtilities.c
gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlaceQueue.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -c pgtest.c

gcc —00 -m32 -std=c99 -Wall -W -ggdb3 -o pgtest pgtest.o Place.o
PlaceQueue.o Queue.o TestPlace.o TestPlaceQueue.o MarkUp.o
PlaceUtilities.o PlaceQueueUtilities.o

[wdm@VMCentos64 Make]$

Again, the only files that were recompiled were the ones depending on the changed file.

CS@VT Computer Organization Il ©2005-2013 McQuain

I Examples using make GNU Make 18

Of course, we can also build “secondary” targets:

[wdm@VMCentO0S64 Make]$ make PlaceQueue.o

gcc —-00 —m32 —-std=c99 -Wall -W —ggdb3 -c Place.c

gcc —00 —m32 -std=c99 -Wall -W —ggdb3 -c Queue.c

gcc —00 —m32 —-std=c99 -Wall -W —ggdb3 —-c PlaceQueue.c
[wdm@VMCent0S64 Make]$

The only files that were compiled were the ones on which the specified target depends.

CS@VT Computer Organization Il ©2005-2013 McQuain

Using Implicit Rules GNU Make 19

Finally, we can simplify the makefile by taking advantage of the fact that make applies
certain implicit rules by default:

Build components:

pgtest.o: Place.o TestPlace.o TestPlaceQueue.o

Place.o: Place.h

PlaceQueue.o: PlaceQueue.h Place.o Queue.o

Queue.o: Queue.h

TestPlace.o: TestPlace.h PlaceUtilities.o MarkUp.o
TestPlaceQueue.o: TestPlaceQueue.h PlaceQueueUtilities.o MarkUp.o
PlaceUtilities.o: PlaceUtilities.h Place.o

PlaceQueueUtilities.o: PlaceQueueUtilities.h PlaceQueue.o PlaceUtilities.o
MarkUp.o: MarkUp.h

See the GNU Make manual for a full discussion of this.

CS@VT Computer Organization Il ©2005-2013 McQuain

