
GNU Make

Computer Organization II

1

CS@VT ©2005-2013 McQuain

What is make?

make is a system utility for managing the build process (compilation/linking/etc).

There are various versions of make; these notes discuss the GNU make utility included on

Linux systems.

As the GNU Make manual* says:

The make utility automatically determines which pieces of a large program

need to be recompiled, and issues commands to recompile them.

*http://www.gnu.org/software/make/manual/make.pdf

Using make yields a number of benefits, including:

- faster builds for large systems, since only modules that must be recompiled will be

- the ability to provide a simple way to distribute build instructions for a project

- the ability to provide automated cleanup instructions

GNU Make

Computer Organization II

2

CS@VT ©2005-2013 McQuain

Source Base

The following presentation is based upon the following collection of C source files:

pqtest.c the main “driver”

TestPlace.h test harness for the Place type

TestPlace.c

TestPlaceQueue.h test harness for the PlaceQueue type

TestPlaceQueue.c

MarkUp.h point annotation code used in automated testing

MarkUp.c

PlaceUtilities.h display code for Place and PlaceQueue objects

PlaceUtilities.c

PlaceQueueUtilities.h

PlaceQueueUtilities.c

Place.h structured type encapsulating GIS information

Place.c

PlaceQueue.h interface for managing a queue of Place objects

PlaceQueue.c

Queue.h generic queue implementation

Queue.c

The example is derived from a programming assignment used in CS 2506 during Fall

2013.

GNU Make

Computer Organization II

3

CS@VT ©2005-2013 McQuain

Dependencies

The C source files use the following include directives related to files in the project:

pqtest.h:

TestPlace.h

TestPlaceQueue.h

TestPlace.h:

Place.h

TestPlace.c:

PlaceUtilities.h

MarkUp.h

TestPlaceQueue.c:

PlaceQueueUtilities.h

PlaceUtilities.h

MarkUp.h

PlaceQueue.h:

Place.h

Queue.h

PlaceUtilities.h:

Place.h

We need to understand how the inclusions affect compilation…

PlaceQueueUtilities.h:

PlaceQueue.h

PlaceQueueUtilities.c:

PlaceUtilities.h

MarkUp.h

GNU Make

Computer Organization II

4

CS@VT ©2005-2013 McQuain

Dependency Map

The C source files exhibit the following dependencies (due to include directives):

pqtest.*

TestPlace.* TestPlaceQueue.*

PlaceQueue.*PlaceUtilities.*

Markup.*

Place.* Queue.*

We need to understand the dependencies in order to define the rules make will apply.

PlaceQueueUtilities.*

GNU Make

Computer Organization II

5

CS@VT ©2005-2013 McQuain

Makefiles and Rules

You use a kind of script called a makefile to tell make what to do.

A simple makefile is just a list of rules of the form:

target… : prequisites…

recipe

…

Prerequisites are the files that are used as input to create the target.

A recipe specifies an action that make carries out.

GNU Make

Computer Organization II

6

CS@VT ©2005-2013 McQuain

Defining a Simple Rule

Here is a simple rule for compiling Queue.c (and so producing Queue.o):

Queue.o: Queue.c Queue.h

gcc –std=c99 –Wall -c Queue.c

target prerequisites

recipe

So, if we invoke make on this rule, make will execute the command:

gcc –std=c99 –Wall -c Queue.c

tab!!

GNU Make

Computer Organization II

7

CS@VT ©2005-2013 McQuain

Defining a More Complex Rule

Here is a simple rule for compiling TestPlace.c (and so producing TestPlace.o):

Now, we have some issues:

- This doesn’t save us any rebuilding… every C file that TestPlace.o depends on

will be recompiled every time we invoke the rule for that target.

- There is a lot of redundancy in the statement of the rule… too much typing!

- What if we wanted to build for debugging? We’d need to add something (for
instance, –ggdb3) to the recipe in every rule. That’s inefficient.

TestPlace.o: TestPlace.c TestPlace.h \

MarkUp.c MarkUp.h \

PlaceUtilities.c PlaceUtilities.h \

Place.c Place.h

gcc –std=c99 -c TestPlace.c MarkUp.c PlaceUtilities.c Place.c

GNU Make

Computer Organization II

8

CS@VT ©2005-2013 McQuain

Using the Dependencies

We can specify targets as prerequisites, as well as C source files:

Now, if we invoke make on the target TestPlaceQueue.o:

- make examines the modification time for each direct and indirect prerequisite for
TestPlace.o

- each involved target is rebuilt, by invoking its recipe, iff that target has a prerequisite,

that has changed since that target was last built

TestPlace.o: TestPlace.c TestPlace.h PlaceUtilities.o MarkUp.o

gcc –std=c99 -c TestPlace.c

PlaceUtilities.o: PlaceUtilities.c PlaceUtilities.h Place.o

gcc –std=c99 -c PlaceUtilities.c

MarkUp.o: MarkUp.c MarkUp.h

gcc –std=c99 -c MarkUp.c

GNU Make

Computer Organization II

9

CS@VT ©2005-2013 McQuain

Makefile Variables

We can define variables in our makefile and use them in recipes:

CC=gcc

CFLAGS=-O0 -m32 -std=c99 -Wall -W -ggdb3

TestPlace.o: TestPlace.c TestPlace.h PlaceUtilities.o MarkUp.o

$(CC) $(CFLAGS) -c TestPlace.c

This would make it easier to alter the compiler options for all targets (or to change

compilers).

GNU Make

Computer Organization II

10

CS@VT ©2005-2013 McQuain

Rules Without Prerequisites

clean:

rm -f *.o *.stackdump

We can also define a rule with no prerequisites; the most common use is probably to define

a cleanup rule:

Invoking make on this target would cause the removal of all object and stackdump files

from the directory.

GNU Make

Computer Organization II

11

CS@VT ©2005-2013 McQuain

A Complete Makefile

Makefile for assignment C3, CS 2506, Fall 2013

#

SHELL=/bin/bash

Set compilation options:

#

-O0 no optimizations; remove after debugging

-m32 create 32-bit executable

-std=c99 use C99 Standard features

-Wall show "all" warnings

-W show even more warnings (annoying)

-ggdb3 add extra debug info; remove after debugging

#

CC=gcc

CFLAGS=-O0 -m32 -std=c99 -Wall -W -ggdb3

OBJECTS = pqtest.o Place.o PlaceQueue.o Queue.o TestPlace.o \

TestPlaceQueue.o MarkUp.o PlaceUtilities.o \

PlaceQueueUtilities.o

Build the test code (full project):

pqtest: $(OBJECTS)

$(CC) $(CFLAGS) -o pqtest $(OBJECTS)

...

Here is a complete makefile for the example project:

GNU Make

Computer Organization II

12

CS@VT ©2005-2013 McQuain

A Complete Makefile

...

Rules for components:

pqtest.o: pqtest.c TestPlace.o TestPlaceQueue.o

$(CC) $(CFLAGS) -c pqtest.c

Place.o: Place.c Place.h

$(CC) $(CFLAGS) -c Place.c

PlaceQueue.o: PlaceQueue.c PlaceQueue.h Place.o Queue.o

$(CC) $(CFLAGS) -c PlaceQueue.c

Queue.o: Queue.c Queue.h

$(CC) $(CFLAGS) -c Queue.c

TestPlace.o: TestPlace.c TestPlace.h PlaceUtilities.o MarkUp.o

$(CC) $(CFLAGS) -c TestPlace.c

TestPlaceQueue.o: TestPlaceQueue.c TestPlaceQueue.h \

PlaceQueueUtilities.o MarkUp.o

$(CC) $(CFLAGS) -c TestPlaceQueue.c

PlaceUtilities.o: PlaceUtilities.c PlaceUtilities.h Place.o

$(CC) $(CFLAGS) -c PlaceUtilities.c

...

GNU Make

Computer Organization II

13

CS@VT ©2005-2013 McQuain

A Complete Makefile

...

PlaceUtilities.o: PlaceUtilities.c PlaceUtilities.h Place.o

$(CC) $(CFLAGS) -c PlaceUtilities.c

PlaceQueueUtilities.o: PlaceQueueUtilities.c \

PlaceQueueUtilities.h \

PlaceQueue.o PlaceUtilities.o

$(CC) $(CFLAGS) -c PlaceQueueUtilities.c

MarkUp.o: MarkUp.c MarkUp.h

$(CC) $(CFLAGS) -c MarkUp.c

Cleaning rules:

clean:

rm -f *.o *.stackdump

cleantext:

rm -f *.txt

cleanallfiles:

rm -f *.o *.txt

GNU Make

Computer Organization II

14

CS@VT ©2005-2013 McQuain

Running make

make can be invoked in several ways, including:

make

make <target>

make –f <makefile name> <target>

In the first two cases, make looks for a makefile, in the current directory, with a default

name. GNU make looks for the following names, in this order:

GNUmakefile

makefile

Makefile

If no target is specified, make will process the first rule in the makefile.

GNU Make

Computer Organization II

15

CS@VT ©2005-2013 McQuain

Examples using make

Using the makefile shown above, and the source files indicated earlier:

[wdm@VMCentos64 Make]$ make pqtest

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c Place.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceUtilities.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c MarkUp.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlace.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c Queue.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueue.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueueUtilities.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlaceQueue.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c pqtest.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -o pqtest pqtest.o Place.o

PlaceQueue.o Queue.o TestPlace.o TestPlaceQueue.o MarkUp.o

PlaceUtilities.o PlaceQueueUtilities.o

[wdm@VMCentos64 Make]$

Since I hadn’t compiled anything yet, make invoked all of the rules in Makefile.

GNU Make

Computer Organization II

16

CS@VT ©2005-2013 McQuain

Examples using make

Now, I’ll modify one of the C files and run make again:

[wdm@VMCentos64 Make]$ touch MarkUp.c

[wdm@VMCentos64 Make]$ make pqtest

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c MarkUp.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlace.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlaceQueue.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c pqtest.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -o pqtest pqtest.o Place.o

PlaceQueue.o Queue.o TestPlace.o TestPlaceQueue.o MarkUp.o

PlaceUtilities.o PlaceQueueUtilities.o

[wdm@VMCentos64 Make]$

The only recipes that were invoked were those for the targets that depend on MarkUp.c.

GNU Make

Computer Organization II

17

CS@VT ©2005-2013 McQuain

Examples using make

Now, I’ll modify a “deeper” C file and run make again:

[wdm@VMCentos64 Make]$ touch Place.c

[wdm@VMCentos64 Make]$ make pqtest

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c Place.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceUtilities.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlace.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueue.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueueUtilities.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c TestPlaceQueue.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c pqtest.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -o pqtest pqtest.o Place.o

PlaceQueue.o Queue.o TestPlace.o TestPlaceQueue.o MarkUp.o

PlaceUtilities.o PlaceQueueUtilities.o

[wdm@VMCentos64 Make]$

Again, the only files that were recompiled were the ones depending on the changed file.

GNU Make

Computer Organization II

18

CS@VT ©2005-2013 McQuain

Examples using make

Of course, we can also build “secondary” targets:

[wdm@VMCentOS64 Make]$ make PlaceQueue.o

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c Place.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c Queue.c

gcc -O0 -m32 -std=c99 -Wall -W -ggdb3 -c PlaceQueue.c

[wdm@VMCentOS64 Make]$

The only files that were compiled were the ones on which the specified target depends.

GNU Make

Computer Organization II

19

CS@VT ©2005-2013 McQuain

Using Implicit Rules

Finally, we can simplify the makefile by taking advantage of the fact that make applies

certain implicit rules by default:

...

Build components:

pqtest.o: Place.o TestPlace.o TestPlaceQueue.o

Place.o: Place.h

PlaceQueue.o: PlaceQueue.h Place.o Queue.o

Queue.o: Queue.h

TestPlace.o: TestPlace.h PlaceUtilities.o MarkUp.o

TestPlaceQueue.o: TestPlaceQueue.h PlaceQueueUtilities.o MarkUp.o

PlaceUtilities.o: PlaceUtilities.h Place.o

PlaceQueueUtilities.o: PlaceQueueUtilities.h PlaceQueue.o PlaceUtilities.o

MarkUp.o: MarkUp.h

...

See the GNU Make manual for a full discussion of this.

