
x86 Assembly

 Computer Organization I

1

CS@VT ©2005-2015 McQuain

Credits and Disclaimers

The examples and discussion in the following slides have been adapted from a

variety of sources, including:

Chapter 3 of Computer Systems 2nd Edition by Bryant and O'Hallaron

x86 Assembly/GAS Syntax on WikiBooks

 (http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax)

Using Assembly Language in Linux by Phillip ??

 (http://asm.sourceforge.net/articles/linasm.html)

The C code was compiled to assembly with gcc version 4.5.2 on Ubuntu Linux.

Unless noted otherwise, the assembly code was generated using the following

command line:
gcc –S –m32 –O0 file.c

AT&T assembly syntax is used, rather than Intel syntax, since that is what the gcc

tools use.

x86 Assembly

 Computer Organization I

2

CS@VT ©2005-2015 McQuain

Program Translation Overview

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

x86 Assembly

 Computer Organization I

3

CS@VT ©2005-2015 McQuain

IA-32 Integer Registers

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers

ge
n

er
al

 p
u

rp
o

se

accumulate

counter

data

base

source

index

destination

index

stack

pointer

base

pointer

Origin
(mostly obsolete)

x86 Assembly

 Computer Organization I

4

CS@VT ©2005-2015 McQuain

IA-32 Nomenclature

Due to the long history of the x86 architecture, the terminology for data lengths

can be somewhat confusing:

 byte b 8 bits, no surprises there

 short s 16-bit integer or 32-bit float

 word w 16-bit value

 long l 32-bit integer or 64-bit float (aka double word)

 quad q 64-bit integer

The single-character abbreviations are used in the names of many of the x86

assembly instructions to indicate the length of the operands.

As long as the widths of the operands match, any of these suffixes can be used

with the assembly instructions that are discussed in the following slides; for
simplicity, we will generally restrict the examples to operations on long values.

x86 Assembly

 Computer Organization I

5

CS@VT ©2005-2015 McQuain

 .file "simplest.c"

 .text

.globl main

 .type main, @function

main:

 pushl %ebp

 movl %esp, %ebp

 subl $16, %esp

 movl $5, -4(%ebp)

 movl $16, -8(%ebp)

 movl -8(%ebp), %eax

 movl -4(%ebp), %edx

 leal (%edx,%eax), %eax

 movl %eax, -12(%ebp)

 movl $0, %eax

 leave

 ret

 .size main, .-main

 .ident "GCC: (Ubuntu/Linaro 4.5.2-8ubuntu4) 4.5.2"

 .section .note.GNU-stack,"",@progbits

Simple Example: C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

gcc -O1 -S -Wall -m32 simplest.c

x86 Assembly

 Computer Organization I

6

CS@VT ©2005-2015 McQuain

Simple Example: Memory Layout

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

ebp old value of ebp

ebp – 4 x

ebp – 8 y

ebp - 12 t

esp

Local variables and function parameters are stored in memory, and organized in a

stack frame.

Two registers are used to keep track of the organization:
 esp address of the top element on the stack

 ebp address of the first element in the current stack frame

in
c
re

a
s
in

g
 a

d
d

re
s
s

e
s

the Stack

x86 Assembly

 Computer Organization I

7

CS@VT ©2005-2015 McQuain

Register-Memory Data Transfers

Many machine-level operations require that data be transferred between memory

and registers.

The most basic instructions for this are the variants of the mov instruction:

 movl src, dest

 dest := src

This copies a 32-bit value from src into dest.

Despite the name, it has no effect on the value of src.

The two operands can be specified in a number of ways:

 - immediate values

 - one of the 8 IA-32 integer registers

 - memory address

x86 Assembly

 Computer Organization I

8

CS@VT ©2005-2015 McQuain

Operand Specifications

Immediate: Constant integer data
 Example: $0x400, $-533

 Like C constant, but prefixed with ‘$’

 Encoded with 1, 2, or 4 bytes

Register: One of 8 integer registers
 Example: %eax, %edx (reg names preceded by '%')

 But %esp and %ebp reserved for special use

 Others have special uses for particular instructions

Memory: 4 consecutive bytes of memory at address given by register
 Simplest example: (%eax)

 Various other “address modes”

x86 Assembly

 Computer Organization I

9

CS@VT ©2005-2015 McQuain

Basic Examples

x86 assembly C analog

movl $0x10, %eax a = 16;

movl $42, %ebx b = 42;

movl %ecx, %edx d = c;

movl %eax, (%ebx) *b = a

movl (%ebx), %eax a = *b

Mapping:

 reg

a %eax

b %ebx

c %ecx

d %edx

x86 Assembly

 Computer Organization I

10

CS@VT ©2005-2015 McQuain

C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

movl $5, -4(%ebp)

movl $16, -8(%ebp)

movl -8(%ebp), %eax

movl -4(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -12(%ebp)

ebp old value of ebp

ebp – 4 x

ebp – 8 y

ebp - 12 t

eax

ebx

ecx

edx

edi

esi

the Stack

Registers

x86 Assembly

 Computer Organization I

11

CS@VT ©2005-2015 McQuain

C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

movl $5, -4(%ebp)

ebp old value of ebp

ebp – 4 5

ebp – 8 ??

ebp - 12 ??

eax ??

edx ??

the Stack

Registers

x86 Assembly

 Computer Organization I

12

CS@VT ©2005-2015 McQuain

C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

movl $5, -4(%ebp)

movl $16, -8(%ebp)

ebp old value of ebp

ebp – 4 5

ebp – 8 16

ebp - 12 ??

eax ??

edx ??

the Stack

Registers

x86 Assembly

 Computer Organization I

13

CS@VT ©2005-2015 McQuain

C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

movl $5, -4(%ebp)

movl $16, -8(%ebp)

movl -8(%ebp), %eax

movl -4(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -12(%ebp)

ebp old value of ebp

ebp – 4 5

ebp – 8 16

ebp - 12 ??

eax 16

edx ??

the Stack

Registers

x86 Assembly

 Computer Organization I

14

CS@VT ©2005-2015 McQuain

C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

movl $5, -4(%ebp)

movl $16, -8(%ebp)

movl -8(%ebp), %eax

movl -4(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -12(%ebp)

ebp old value of ebp

ebp – 4 5

ebp – 8 16

ebp - 12 ??

eax 16

edx 5

the Stack

Registers

x86 Assembly

 Computer Organization I

15

CS@VT ©2005-2015 McQuain

C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

movl $5, -4(%ebp)

movl $16, -8(%ebp)

movl -8(%ebp), %eax

movl -4(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -12(%ebp)

ebp old value of ebp

ebp – 4 5

ebp – 8 16

ebp - 12 ??

eax 21

edx 5

the Stack

Registers

x86 Assembly

 Computer Organization I

16

CS@VT ©2005-2015 McQuain

Aside: leal

You also noticed the use of the leal instruction:

. . .

leal (%eax,%eax,2), %edx # edx = eax + 2*eax

. . .

The particular form of the instruction used here on the previous slide is:

 leal (src1, src2), dst

 dst = src2 + src1

The execution of the instruction offers some additional performance advantages.

x86 Assembly

 Computer Organization I

17

CS@VT ©2005-2015 McQuain

C to Assembly

int main() {

 int x, y, t;

 x = 5;

 y = 16;

 t = x + y;

 return 0;

}

movl $5, -4(%ebp)

movl $16, -8(%ebp)

movl -8(%ebp), %eax

movl -4(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -12(%ebp)

ebp old value of ebp

ebp – 4 5

ebp – 8 16

ebp - 12 21

eax 21

edx 5

the Stack

Registers

x86 Assembly

 Computer Organization I

18

CS@VT ©2005-2015 McQuain

Integer Arithmetic Instructions

We have the expected addition operation:

 addl rightop, leftop

 leftop = leftop + rightop

The operand ordering shown here is probably confusing:

 - As usual, the destination is listed second.

 - But, that's also the first (left-hand) operand when the arithmetic is

performed.

This same pattern is followed for all the binary integer arithmetic instructions.

See the discussion of AT&T vs Intel syntax later in the notes for an historical

perspective on this.

x86 Assembly

 Computer Organization I

19

CS@VT ©2005-2015 McQuain

More Arithmetic Instructions

In addition:

 subl rightop, leftop

 leftop = leftop - rightop

 imull rightop, leftop

 leftop = leftop * rightop

 negl op

 op = -op

 incl op

 op = op + 1

 decl op

 op = op - 1

(Yes, there is a division instruction, but its interface is confusing and we will not need it.)

