
X86-64 Assembly

Computer Organization I

1

CS@VT ©2005-2020 WD McQuain

Credits and Disclaimers

The examples and discussion in the following slides have been adapted from a

variety of sources, including:

Chapter 3 of Computer Systems 3nd Edition by Bryant and O'Hallaron

x86 Assembly/GAS Syntax on WikiBooks

(http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax)

The C code was compiled to assembly with gcc version 8.3.1 on CentOS 8.

Unless noted otherwise, the assembly code was generated using the following

command line:

gcc –S -fno-asynchronous-unwind-tables –mno-red-zone –O0 file.c

AT&T assembly syntax is used, rather than Intel syntax, since that is what the gcc

tools use.

X86-64 Assembly

Computer Organization I

2

CS@VT ©2005-2020 WD McQuain

Basic Arithmetic Instructions

Also:

addl rightop, leftop

leftop = leftop - rightop

subl rightop, leftop

leftop = leftop - rightop

imull rightop, leftop

leftop = leftop * rightop

negl op

op = -op

incl op

op = op + 1

decl op

op = op - 1

X86-64 Assembly

Computer Organization I

3

CS@VT ©2005-2020 WD McQuain

Shift Instructions

Shifting the representation of an integer

sall rightop, leftop

leftop = leftop << rightop -- C syntax!

sarl rightop, leftop

leftop = leftop >> rightop (preserves sign)

shll rightop, leftop

leftop = leftop << rightop (same as sall)

shrl rightop, leftop

leftop = leftop >> rightop (hi bits set to 0)

X86-64 Assembly

Computer Organization I

4

CS@VT ©2005-2020 WD McQuain

Left Shifts and Multiplication

Shifting an integer operand to the left by k bits is equivalent to multiplying the

operand's value by 2k:

sall 1, %eax # eax = 2*eax

sall 3, %edx # edx = 8*edx

For example:

Since general multiplication is much more expensive (in time) than shifting bits,

we should prefer using a shift-left instruction when multiplying by a power of 2.

edx 00000000 00000000 00000000 00000101 5

edx 00000000 00000000 00000000 00101000 40

X86-64 Assembly

Computer Organization I

5

CS@VT ©2005-2020 WD McQuain

Right Shifts, Unsigned Operands, and Division

Shifting an integer operand to the right by k bits might be expected to divide the

operand's value by 2k:

shrl 1, %eax # eax = eax / 2 ?

Recall that shrl shifts in 0's on the left; so this will indeed perform integer

division by 2, provided the value in eax is interpreted as an unsigned integer.

For example, if we have an 8-bit unsigned representation of 25510, the instruction

above would perform the following transformation:

1111 1111  0111 1111

So it would yield 12710, which is correct for integer division.

X86-64 Assembly

Computer Organization I

6

CS@VT ©2005-2020 WD McQuain

Right Shifts, Unsigned Operands, and Division

But, the following will not yield the correct result for an unsigned integer:

sarl 1, %eax # eax != eax / 2

For example, if we consider an 8-bit representation of 20010, the instruction above

would produce this transformation:

1100 1000  1110 0100

So it would yield 22810, which is incorrect.

The correct result would be 10010 which would be represented as 0110 0010.

Note that the correct value would have been found by using shrl instead.

X86-64 Assembly

Computer Organization I

7

CS@VT ©2005-2020 WD McQuain

Right Shifts, Signed Operands, and Division

Shifting a non-negative (signed) integer operand to the right by k bits will divide

the operand's value by 2k:

shrl 1, %eax # eax = eax / 2

sarl 1, %eax # eax = eax / 2

If eax holds a non-negative signed integer, the left-most bit will 0, and so both of

these instructions will yield the same result.

But, if the signed operand is negative, then the high bit will be 1.

Clearly, shrl cannot yield the correct quotient in this case. Why?

X86-64 Assembly

Computer Organization I

8

CS@VT ©2005-2020 WD McQuain

Right Shifts, Signed Operands, and Division

What about the following instruction, if eax holds a negative signed value?

sarl 1, %eax # eax = eax / 2

sarl replicates the sign bit, so this will yield a negative result…

Mathematics says yes by the

Division Algorithm:

-7 = -4 * 2 + 1

Remainders must be >= 0!

C says no:

-7 = -3 * 2 + -1

-7 % 2 must equal -(7 % 2)

But, suppose we have an 8-bit representation of -7: 1111 1001

Then applying an arithmetic right shift of 1 position yields: 1111 1100

That represents the value -4… is that correct?

X86-64 Assembly

Computer Organization I

9

CS@VT ©2005-2020 WD McQuain

Bitwise Instructions

There are the usual logical operations, applied bitwise:

andl rightop, leftop

leftop = leftop & rightop // C syntax!

orl rightop, leftop

leftop = leftop | righttop

xorl rightop, leftop

leftop = leftop ^ rightop

notl op

op = ~op

X86-64 Assembly

Computer Organization I

10

CS@VT ©2005-2020 WD McQuain

Arithmetic/Logic Example

int arith(int x, int y, int z) {

. . .

}

. . .

rbp old value of rbp

rsp . . .

the Stack

fra
m

e
 fo

r c
a
lle

r
fa

m
e
 fo

r a
rith

()

Calling a function causes the

creation of a stack frame

dedicated to that function.

The frame pointer register, rbp,

points to the beginning of the

stack frame for the currently-

running function.

The stack pointer register, rsp,

points to the last thing that was

pushed onto the stack.

(As an optimization, %rsp may

or may not actually be updated.

More on this later).

X86-64 Assembly

Computer Organization I

11

CS@VT ©2005-2020 WD McQuain

Arithmetic/Logic Example

int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

. . .

rbp + 8 return address

rbp old value of rbp

rbp – 4 t1

rbp – 8 t2

rbp - 12 t3

rbp - 16 t4

rbp - 20 x

rbp - 24 y

rbp – 28 Z

the Stack

a
u

to
s

 w
ith

in
 fn

The first 6 function arguments are

passed in registers, additional

arguments are passed on the stack.

In this example:
• x is passed in register %edi and is moved to -20(%rbp).

• y is passed in register %esi and is moved to -24(%rbp).

• z is passed in register %edx and is moved to -28(%rbp).

The arguments stored in registers

are often moved somewhere else on

the stack before any computations.

X86-64 Assembly

Computer Organization I

12

CS@VT ©2005-2020 WD McQuain

Aside: Stack Frame Layout

. . .

rbp + 8 return address 8-byte value

rbp old value of rbp 8-byte value

rbp – 4 t1 4-byte values

rbp – 8 t2

rbp - 12 t3

rbp - 16 t4

rbp - 20 x

rbp - 24 y

rbp – 28 Z

the Stack

X86-64 Assembly

Computer Organization I

13

CS@VT ©2005-2020 WD McQuain

Arithmetic/Logic Example

int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

Mapping:

address

x rbp – 20

y rbp - 24

t1 rbp - 4

movl -24(%rbp), %eax # eax = y

movl -20(%rbp), %edx # edx = x

addl %edx, %eax # eax = x + y

movl %eax, -4(%rbp) # t1 = x + y

X86-64 Assembly

Computer Organization I

14

CS@VT ©2005-2020 WD McQuain

Arithmetic/Logic Example

int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

Mapping:

address

z rbp - 28

t2 rbp - 8

movl -28(%rbp), %edx # edx = z

movl %edx, %eax # eax = z

addl %eax, %eax # eax = z + z = 2z

addl %edx, %eax # eax = 2z + z = 3z

sall $4, %eax # eax = (3z) << 4 = 3z*16 = 48z

movl %eax, -8(%rbp) # t2 = 48z

X86-64 Assembly

Computer Organization I

15

CS@VT ©2005-2020 WD McQuain

Arithmetic/Logic Example

int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

Mapping:

address

t1 rbp - 4

t3 rbp - 12

movl -4(%rbp), %eax # eax = t1

movzwl $ax, %eax # eax = t1 & 0xFFFF

movl %eax, -12(%rbp) # t3 = t1 & 0xFFFF

X86-64 Assembly

Computer Organization I

16

CS@VT ©2005-2020 WD McQuain

Aside: movzwl

You may have noticed the movzwl instruction:

. . .

movzwl $ax, %eax # eax = t1 & 0xFFFF

. . .

This moves a zero extended (z) word (16 bits) stored in %ax to %eax.

And is equivalent to t1 & 0xFFFF since that will zero out the high 16 bits in

%eax preserving the rest.

We'll see other versions of this instruction later. There are different sizes (movzb)

and there are signed variants (movsb).

In this case, movzwl apparently offered a performance (or some other) advantage.

X86-64 Assembly

Computer Organization I

17

CS@VT ©2005-2020 WD McQuain

Arithmetic/Logic Example

int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

Mapping:

address

t2 rbp - 8

t3 rbp - 12

t4 rbp - 16

movl -8(%rbp), %eax # eax = t2

imull -12(%rbp), %eax # eax = t2 * t3

movl %eax, -16(%rbp) # t4 = t2 * t3

X86-64 Assembly

Computer Organization I

18

CS@VT ©2005-2020 WD McQuain

.file "arith.c"

.text

.globl arith

.type arith, @function

arith:

pushq %rbp # save old frame pointer

movq %rsp, %rbp # move frame pointer to top

movl %edi, -20(%rbp) # move arguments x, y, and z

movl %esi, -24(%rbp)

movl %edx, -28(%rbp)

. . .

movl -16(%rbp), %eax # set return value in eax

popq %rbp # rsp = rbp; pop to rbp

ret # return to caller

.size arith, .-arith

.ident "GCC: (GNU) 4.8.3 20140911 ..."

.section .note.GNU-stack,"",@progbits

Assembled Code

int arith(int x, int y, int z) {

. . .

int t4 = t2 * t3;

return t4;

}

X86-64 Assembly

Computer Organization I

19

CS@VT ©2005-2020 WD McQuain

Assembled Code

int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

. . .

movl -24(%rbp), %eax # eax = y

movl -20(%rbp), %edx # edx = x

addl %edx, %eax # eax = x + y

movl %eax, -4(%rbp) # t1 = x + y

movl -28(%rbp), %edx # edx = z

movl %edx, %eax # eax = z

addl %eax, %eax # eax = z + z = 2z

addl %edx, %eax # eax = 2z + z = 3z

sall $4, %eax # eax = (3z) << 4 = 3z*16 = 48z

movl %eax, -8(%rbp) # t2 = 48z

. . .
int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

. . .

}

X86-64 Assembly

Computer Organization I

20

CS@VT ©2005-2020 WD McQuain

Assembled Code

int arith(int x, int y, int z) {

int t1 = x + y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

. . .

movl -4(%rbp), %eax # eax = t1

movzwl %ax, %eax # eax = t1 & 0xFFFF

movl %eax, -12(%rbp) # t3 = t1 & 0xFFFF

movl -8(%rbp), %eax # eax = t2

imull -12(%rbp), %eax # eax = t2 * t3

movl %eax, -16(%rbp) # t4 = t2 * t3

. . . int arith(int x, int y, int z) {

. . .

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

. . .

}

