
Strings, I/O, Parsing

Computer Organization I

1

CS@VT ©2018 W D McQuain

C Strings and I/O

The basic nature of string-handling in C causes some problems with input of strings.

The fundamental problems are:

• strings are stored in arrays of char

• these arrays are fixed-length and must be created before the input is read

• input may be unpredictable

Strings, I/O, Parsing

Computer Organization I

2

CS@VT ©2018 W D McQuain

Output and C Strings

Assuming a properly-terminated C string, writing it to a file, or standard output, is simple

and safe.

The most common approach is to use fprintf():

char* str = "some very long string ... ending here";

fprintf(out, "str: %s\n", str);

With a properly-terminated string, this operation cannot fail unless the output device is full,

which seems unlikely.

Strings, I/O, Parsing

Computer Organization I

3

CS@VT ©2018 W D McQuain

Output and C Strings

We can also sprint() and snprintf()…

char* str = "some very long string ... ending here";

fprintf(out, "str: %s\n", str);

With a properly-terminated string, this operation cannot fail unless the output device is full,

which seems unlikely.

Strings, I/O, Parsing

Computer Organization I

4

CS@VT ©2018 W D McQuain

fscanf() and Strings

You may use the %s switch in fscanf() to read character data into a char array:

#define MAX_LENGTH 25

. . .

char str[MAX_NLENGTH + 1];

. . .

fscanf(in, "%s", str);

fscanf() will:

• skip leading whitespace,

• read and store characters into str[] until whitespace or EOF is encountered,

• write a terminating '\0' into str[]

BUT, fscanf() has no information about the length of str[], so it may write past the

end of the array!

This is (arguably) safe when the format of the input date is tightly specified.

Strings, I/O, Parsing

Computer Organization I

5

CS@VT ©2018 W D McQuain

fscanf() and Strings

Suppose we want to read personal names from an input file, and we are told each line of the

input file will obey the following formatting rule:

<first name><\t><middle name><\t><last name><\n>

Marion\tMitchell\tMorrison

For example:

But… how long might one of those strings be?

We have two cases:

a) a maximum length is specified by whatever is supplying the input data

b) in the absence of such guarantee, we can merely make a good guess

Strings, I/O, Parsing

Computer Organization I

6

CS@VT ©2018 W D McQuain

fscanf() and Strings

Let's say we decide the maximum name length is 25 characters:

#define MAX_NLENGTH 25

. . .

char fname[MAX_NLENGTH + 1];

char mname[MAX_NLENGTH + 1];

char lname[MAX_NLENGTH + 1];

fscanf(in, "%s %s %s", fname, mname, lname);

printf("%s\n%s\n%s\n", fname, mname, lname);

Marion\tMitchell\tMorrison

Marion

Mitchell

Morrison

OK, that worked as desired…

Strings, I/O, Parsing

Computer Organization I

7

CS@VT ©2018 W D McQuain

fscanf() and Strings

Now suppose the input file also contains a city name and a country name, so we have

records that are formatted like so:

<first name><\t><middle name><\t><last name><\n>

<city name><\n>

<country name><\n>

Marion\tMitchell\tMorrison

Winterset

Iowa

For example:

Now… how long might a city or country name be?

Strings, I/O, Parsing

Computer Organization I

8

CS@VT ©2018 W D McQuain

fscanf() and Strings

Let's say we assume our earlier guess is still safe:

#define MAX_NLENGTH 25

. . .

char fname[MAX_NLENGTH + 1];

char mname[MAX_NLENGTH + 1];

char lname[MAX_NLENGTH + 1];

fscanf(in, "%s %s %s", fname, mname, lname);

printf("%s\n%s\n%s\n", fname, mname, lname);

char cityname[MAX_NLENGTH + 1];

fscanf(in, "%s", cityname);

printf("%s\n", cityname);

char countryname[MAX_NLENGTH + 1];

fscanf(in, "%s", countryname);

printf("%s\n", countryname);

Marion\tMitchell\tMorrison

Marion

Mitchell

Morrison

That looks OK…

Strings, I/O, Parsing

Computer Organization I

9

CS@VT ©2018 W D McQuain

fscanf() and Strings

But consider the following input data (yes, that's a real place name):

#define MAX_NLENGTH 25

. . .

char fname[MAX_NLENGTH + 1];

char mname[MAX_NLENGTH + 1];

char lname[MAX_NLENGTH + 1];

fscanf(in, "%s %s %s", fname, mname, lname);

printf("%s\n%s\n%s\n", fname, mname, lname);

char cityname[MAX_NLENGTH + 1];

fscanf(in, "%s", cityname);

printf("%s\n", cityname);

char countryname[MAX_NLENGTH + 1];

fscanf(in, "%s", countryname);

printf("%s\n", countryname);

Naomi Ellen Watts

Llanfairpwllgwyngyllgogerycchwyrndrobwlllllantysilioggogogoch

Wales

Now we are in trouble.

cityname[] is far

too small to hold this.

Strings, I/O, Parsing

Computer Organization I

10

CS@VT ©2018 W D McQuain

fscanf() and Strings

Naomi

Ellen

Watts

Llanfairpwllgwyngyllgogerycchwyrndrobwlllllantysilioggogogoch

Wales

However, things appear to still be OK. Here's the output from the given code:

But… let's add some printf() statements to check the strings after everything has been

read:

Naomi

Ellen

ndrobwlllllantysilioggogogoch

Llanfairpwllgwyngyllgogerycchwyrndrobwlllllantysilioggogogoch

Wales

Apparently, reading that long place name has caused the array holding the last name to be

corrupted… with the tail end of the long place name… and there's no runtime error… just

incorrect results…

Strings, I/O, Parsing

Computer Organization I

11

CS@VT ©2018 W D McQuain

fscanf() and Strings

So, using fscanf() to read character data can lead to silent errors.

It can also lead to runtime errors.

If we merely change the placement of the array declarations in the code shown earlier,

execution leads to a segfault…

#define MAX_NLENGTH 25

. . .

char cityname[MAX_NLENGTH + 1];

char countryname[MAX_NLENGTH + 1];

char fname[MAX_NLENGTH + 1];

char mname[MAX_NLENGTH + 1];

char lname[MAX_NLENGTH + 1];

. . .

Using fscanf() to read character data is clearly risky, but can be considered safe if

precise assumptions about the input data can be justified.

Strings, I/O, Parsing

Computer Organization I

12

CS@VT ©2018 W D McQuain

Reading Delimited Data

Suppose we have an input file with information about music tracks:

Buddy Guy Skin Deep 00:04:30

Eric Clapton I'm Tore Down 00:03:03

B. B. King A World Full of Strangers 00:04:22

Eagles Long Road out of Eden 00:10:17

Each line follows the pattern:

<artist><\t><track name><\t><track length><\n>

Where:

artist alphanumeric plus spaces, no length limit

track name alphanumeric plus spaces, no length limit

track length hh:mm:ss, where h, m and s are digits

Now, fscanf() evidently won't do for the artist and track name fields, since they may

contain spaces.

Strings, I/O, Parsing

Computer Organization I

13

CS@VT ©2018 W D McQuain

fgets(), strtok(), String Library Functions

Here, the strings are delimited by tab characters; can we take advantage of that?

Buddy Guy Skin Deep 4:30

Eric Clapton I'm Tore Down 3:03

B. B. King A World Full of Strangers 4:22

Eagles Long Road out of Eden 10:17

fgets() can be used to safely read entire lines of character data, if we have a reasonable

idea of the maximum length of the line.

strtok() can be used break up a character string into chunks, based on the occurrence of

delimiting characters.

strlen() and strncpy() can be used to safely copy the chunks into individual arrays.

calloc() and strlen() can be used create custom-sized arrays to hold the chunks.

Strings, I/O, Parsing

Computer Organization I

14

CS@VT ©2018 W D McQuain

fgets()

char* fgets(char* s, int n, FILE* stream);

For the input shown below, this code would read the lines sequentially into the array:

reads bytes from the stream into the array s until n - 1 bytes have been read, or a

newline character has been read (and transferred to s), or an EOF is encountered.

s is then terminated with a zero byte.

returns s on success; returns NULL if an error occurs or no data is read.

#define MAX_LINELENGTH 10000 // absurdly large guess

char data[MAX_LINELENGTH + 1];

while (fgets(data, MAX_LINELENGTH + 1, in) != NULL) {

// process the data

}

Buddy Guy Skin Deep 4:30

Eric Clapton I'm Tore Down 3:03

B. B. King A World Full of Strangers 4:22

Eagles Long Road out of Eden 10:17

Strings, I/O, Parsing

Computer Organization I

15

CS@VT ©2018 W D McQuain

strtok()

char* strtok(char* s, const char* delimiters);

if s is not NULL:

searches s for first character that is not in delimiters; returns NULL if this fails.

otherwise notes the beginning of a token, searches s for next character that is in

delimiters, replaces that with a terminator, returns pointer to beginning of token

if s is NULL:

performs actions above, using last string s passed in, beginning immediately after

the end of the previous token that was found

Strings, I/O, Parsing

Computer Organization I

16

CS@VT ©2018 W D McQuain

strtok()

Suppose the first line of input shown below has been read into an array data:

Buddy Guy Skin Deep 4:30

We can use strtok() to isolate the artist name, since it's followed by a tab character:

char* token = strtok(data, "\t");

'B' 'u' 'd' 'd' 'y' ' ' 'G' 'u' 'y' '\0' 'S' ...

After the call to strtok(), data[] looks like this:

And, token points to the first character in data[]. . .

. . . and so token points to a valid C-string with a terminator.

'B' 'u' 'd' 'd' 'y' ' ' 'G' 'u' 'y' '\t' 'S' ...

The array contents would be:

Strings, I/O, Parsing

Computer Organization I

17

CS@VT ©2018 W D McQuain

strtok()

We can use strtok() again to isolate the title, since it's followed by a tab character:

char* token = strtok(NULL, "\t");

'B' 'u' 'd' 'd' 'y' ' ' 'G' 'u' 'y' '\0' 'S' ...

Now, data[] looks like this:

'\0' 'S' 'k' 'i' 'n' ' ' 'D' 'e' 'e' 'p' '\0' ...

Now, data[] looks like this:

And, token points to the first character in the second token in data[]. . .

Strings, I/O, Parsing

Computer Organization I

18

CS@VT ©2018 W D McQuain

Copying the Token

So, we can identify the artist name, and then copy it into an appropriate array:

char* token = strtok(data, "\t");

uint32_t tokenLength = strlen(token); // get token length

// allocate an array of exactly the right length

char* artist = calloc(tokenLength + 1, sizeof(char));

// copy the token into the new array

strncpy(artist, token, tokenLength);

A few points:

• calling strlen() is safe because we know the token is terminated

• calloc() fills the new array with zeros, so we have a terminator for the new string

• strncpy() is safe because the array we are copying into is known to be large

enough

Strings, I/O, Parsing

Computer Organization I

19

CS@VT ©2018 W D McQuain

Reading the Following Data

Each input line has a length field (time) after the title field.

This is numeric data, and should be read as such.

The interesting part is how to get a pointer to the beginning of the length field:

char* lengthField = token + strlen(token) + 1;

strlen(token) gives us the number of characters in the title field.

We need to add 1 to that to account for the '\0' that strtok() inserted in place of the

tab.

Strings, I/O, Parsing

Computer Organization I

20

CS@VT ©2018 W D McQuain

Reading the Following Data

Reading the length data is fairly trivial:

int minutes, seconds;

sscanf(lengthField, "%d%*c%d", &minutes, &seconds);

The %*c specifier accounts for the ':' that

follows the minutes value in the input data.

The single character is read, but discarded.

Strings, I/O, Parsing

Computer Organization I

21

CS@VT ©2018 W D McQuain

Putting it all together…

char data[MAX_LINELENGTH + 1];

FILE* in = fopen(argv[1], "r");

while (fgets(data, MAX_LINELENGTH + 1, in) != NULL) {

char* token = strtok(data, "\t");

uint32_t tokenLength = strlen(token);

char* artist = calloc(tokenLength + 1, sizeof(char));

strncpy(artist, token, tokenLength);

token = strtok(NULL, "\t");

tokenLength = strlen(token);

char* title = calloc(tokenLength + 1, sizeof(char));

strncpy(title, token, tokenLength);

char* lengthField = token + strlen(token) + 1;

int minutes, seconds;

sscanf(lengthField, "%d%*c%d", &minutes, &seconds);

printf("Artist: %s\n", artist);

printf("Title: %s\n", title);

printf("Length: %dm %ds\n", minutes, seconds);

printf("\n");

}

fclose(in);

Strings, I/O, Parsing

Computer Organization I

22

CS@VT ©2018 W D McQuain

scanset* Format Specifiers

It is also possible to specify a set of characters so that a scan operation is limited to

consuming only input characters that occur in that set:

char dest[100] = {'\0'};

scanf("%[0123456789]", dest); // input is "540-231-5605"

This would put the characters "540" into the array dest[], properly terminated.

You can also specify the complement of the set by putting '^' at the beginning of the

scanset specifier:

char dest[100];

scanf("%[^-]", dest); // input is "540-231-5605"

This would also put the characters "540" into the array dest[], properly terminated.

Strings, I/O, Parsing

Computer Organization I

23

CS@VT ©2018 W D McQuain

gcc scanset Format Specifiers

gcc also supports using character ranges when specifying a scanset:

char dest[100] = {'\0'};

scanf("%[0-9]", dest); // input is "540-231-5605"

This would put the characters "540" into the array dest[], properly terminated.

Note that the C Standard does not require this to be supported.

Strings, I/O, Parsing

Computer Organization I

24

CS@VT ©2018 W D McQuain

scanset Format Specifiers

Here's a fancier example that processes the entire phone number:

char areacode[4] = {'\0'};

char prefix[4] = {'\0'};

char customer[5] = {'\0'};

// input is "540-231-5605"

scanf(in, "%[^-]%*c%[^-]%*c%[0-9]", areacode, prefix, customer);

This would:

• put the characters "540" into the array areacode[], properly terminated

• put the characters "231" into the array areacode[], properly terminated

• put the characters "5605" into the array areacode[], properly terminated

Strings, I/O, Parsing

Computer Organization I

25

CS@VT ©2018 W D McQuain

scanset Format Specifiers

Let's analyze that format string:

scanf(in, "%[^-]%*c%[^-]%*c%[0-9]", areacode,

prefix,

customer);

eat until you see a

hyphen

eat one character, which

will be a hyphen, and

throw it away

eat until you see a

character that is not a

digit

Strings, I/O, Parsing

Computer Organization I

26

CS@VT ©2018 W D McQuain

Revisiting Music Data with scansets

#define MAX_ARTISTLENGTH 100

#define MAX_TITLELENGTH 100

int main(int argc, char** argv) {

char artist[MAX_ARTISTLENGTH + 1];

char title[MAX_TITLELENGTH + 1];

int minutes, seconds;

FILE* in = fopen(argv[1], "r");

while (fscanf(in, "%[^\t]%*c%[^\t]%d:%d\n",

artist, title, &minutes, &seconds) == 4) {

printf("Artist: %s\n", artist);

printf("Title: %s\n", title);

printf("Length: %dm %ds\n", minutes, seconds);

printf("\n");

}

fclose(in);

Strings, I/O, Parsing

Computer Organization I

27

CS@VT ©2018 W D McQuain

Revisiting Music Data with scansets

while (fscanf(in, "%[^\t]%*c%[^\t]%d:%d\n",

artist,

title,

&minutes,

&seconds) == 4) {

. . .

}

Buddy Guy Skin Deep 4:30

Eric Clapton I'm Tore Down 3:03

B. B. King A World Full of Strangers 4:22

Eagles Long Road out of Eden 10:17

eat tab after artist

name, discard

