
Scripting

Computer Organization I

1

CS@VT ©2005-2016 McQuain

Scripting versus Programming

bash supports a scripting language.

Programming languages are generally a lot more powerful and a lot faster than scripting

languages.

Programming languages generally start from source code and are compiled into an

executable. This executable is not easily ported into different operating systems.

A scripting language also starts from source code, but is not compiled into an executable.

Rather, an interpreter reads the instructions in the source file and executes each

instruction.

Interpreted programs are generally slower than compiled programs.

The main advantage is that you can easily port the source file to any operating system.

bash is a scripting language. Some other examples of scripting languages are Perl, Lisp,

and Tcl.

Scripting

Computer Organization I

2

CS@VT ©2005-2016 McQuain

First Example

bash scripts are just text files (with a special header line) that contain commands.

We recommend using the extension "sh" when naming script files.

You can create a script using any text editor:

myinfo.sh

Scripting

Computer Organization I

3

CS@VT ©2005-2016 McQuain

Running the Script

To execute the script you must first set execute permissions (see below).

Then, just invoke the script as a command, by name:

Scripting

Computer Organization I

4

CS@VT ©2005-2016 McQuain

Analysis

#! /bin/bash

echo "User name: $USER"

echo "Home directory: $HOME"

echo "Host name: $HOSTNAME"

echo "Path: $PATH"

echo "Working directory: $PWD"

echo "Shell: $SHELL"

The first line specifies:

that the file is a shell script

the shell needed to execute the script

echo writes a line of text to standard output.

USER is a global variable maintained by the bash shell; it stores the user name of

whoever's running the shell.

$ causes the variable USER to be expanded (replaced with its value).

Scripting

Computer Organization I

5

CS@VT ©2005-2016 McQuain

Variables

You may create variables local to your shell by simply using them:

VARNAME="value"

#! /bin/bash

message="Hello, world!"

echo $message

Variable names are case-sensitive, alphanumeric, and may not begin with a digit.

bash reserves a number of global variable names for its own use, including:

PATH HOME CDPATH

PS1 PS2 LANG

See the references for a complete list and descriptions.

Scripting

Computer Organization I

6

CS@VT ©2005-2016 McQuain

Variables

By default, script variables can store any value assigned to them.

Typically variables are used to hold strings or integers.

#! /bin/bash

one=1

two=2

three=$((one + two)) # syntax forces arith. expansion

echo $one

echo $two

echo $three

Spaces are not allowed around the assignment operator.

Scripting

Computer Organization I

7

CS@VT ©2005-2016 McQuain

A Script for Backups

#!/bin/bash

This script makes a backup of my ~/2505 directory.

Change the variables to make the script work for you:

BACKUPDIR=$HOME/2505 # directory to be backed up

TARFILE=/var/tmp/2505.tar # tar file created during backup

SERVER=ap1.cs.vt.edu # server to copy backup to

REMOTEID=wmcquain # your ID on that server

REMOTEDIR=/home/staff/wmcquain # dir to hold backup on server

LOGFILE=~/logs/2505_backup.log # local log file recording backups

Move into the directory to be backed up

cd $BACKUPDIR

Run tar to create the archive.

tar cf $TARFILE *

Copy the file to another host.

scp $TARFILE $REMOTEID@$SERVER:$REMOTEDIR

Create a timestamp in the logfile to record the backup operation.

date >> $LOGFILE

echo backup succeeded >> $LOGFILE

exit 0 # return 0 on success

backup.sh

adapted

from [2]

Scripting

Computer Organization I

8

CS@VT ©2005-2016 McQuain

A Script for Backups

bash > ./backup.sh

wmcquain@ap1.cs.vt.edu's password:

2505.tar 100% 30KB 30.0KB/s 00:00

The script is missing some desirable features:

- the ability to specify the directory to be backed up on the command-line

- error-checking to be sure that directory exists

- checking the exit codes for the various commands called by the script

We may add some of those features later...

Scripting

Computer Organization I

9

CS@VT ©2005-2016 McQuain

Special Variables

There are some special variables that can be referenced but not assigned to.

The following is incomplete and somewhat oversimplified:

$* used to access the positional command-line parameters

$@ used to access the positional command-line parameters

$# expands to the number of positional parameters

$? expands to the exit status of the most recently executed command

$k (k an integer) the k-th positional command-line parameter

#! /bin/bash

echo "There were $# parameters!"

echo "$@"

Scripting

Computer Organization I

10

CS@VT ©2005-2016 McQuain

Special Variables

The ability to catch the exit code from a command is useful in detecting errors:

#! /bin/bash

ls –e *

exitcode="$?"

echo "ls exited with: $exitcode"

The UNIX convention is that 0 is returned on success and nonzero on failure.

From the man page for ls:

Exit status:

0 if OK,

1 if minor problems (e.g., cannot access subdirectory),

2 if serious trouble (e.g., cannot access command-line argument).

Scripting

Computer Organization I

11

CS@VT ©2005-2016 McQuain

Escape Characters

bash > today=20140201

bash > echo $today

20140201

bash > echo \$today

$today

The backslash character (outside of quotes) preserves the literal value of the next

character that follows it:

BTW, note that this also shows we can apply variables from the command prompt.

Scripting

Computer Organization I

12

CS@VT ©2005-2016 McQuain

Single Quotes and Double Quotes

Single quotes preserve the literal value of every character within them:

bash > echo '$today'

$today

Double quotes preserve the literal value of every character within them except the dollar
sign $, backticks ``, and the backslash \:

bash > echo "$today"

20140201

Scripting

Computer Organization I

13

CS@VT ©2005-2016 McQuain

Shell Expansion: Braces

An expression of the form

preamble{comma-separated-list}postfix

expands to a sequence of values obtained by concatenating the preamble and postscript

with each element in the comma-separated list within the braces:

bash > echo eleg{ant,aic,ible}

elegant elegaic elegible

Scripting

Computer Organization I

14

CS@VT ©2005-2016 McQuain

Command Expansion

We can replace a command with its output by using either:

`command` or $(command)

bash > echo date

date

bash > echo `date`

Sat Feb 1 19:52:08 EST 2014

bash > echo $(date)

Sat Feb 1 19:53:17 EST 2014

Scripting

Computer Organization I

15

CS@VT ©2005-2016 McQuain

Arithmetic Expansion

Arithmetic computations can be carried out directly, using the syntax for arithmetic

expansion:

$((expression))

Arithmetic computations can be carried out directly, using the syntax for arithmetic

expansion.

The available operators are shown on the next slide.

The usual C-like precedence rules apply, but when in doubt, parenthesize.

Leading 0 denotes an octal value; leading 0X a hexadecimal value.

Scripting

Computer Organization I

16

CS@VT ©2005-2016 McQuain

Arithmetic Operators

Operator Meaning

VAR++ and VAR–- post-increment and post-decrement

++VAR and --VAR pre-increment and pre-decrement

- and + unary minus and plus

! and ~ logical and bitwise negation

** exponentiation

*, / and % multiplication, division, remainder

+ and - addition, subtraction

<< and >> left and right bitwise shifts

<=, >=, < and > comparison operators

== and != equality and inequality

& bitwise AND

^ bitwise exclusive OR

| bitwise OR

&& logical AND

|| logical OR

expr ? expr : expr conditional evaluation

=, *=, /=, %=, +=, -=,

<<=, >>=, &=, ^= and |= assignments

, separator between expressions

Scripting

Computer Organization I

17

CS@VT ©2005-2016 McQuain

Example

#! /bin/bash

left=$1 # left gets parameter 1

right=$2 # right gets parameter 2

sum=$((left + right)) # sum gets result of addition

echo "$0 says the sum of $left and $right is $sum."

exit 0

bash > ./add.sh 83231 70124

./add.sh says the sum of 83231 and 70124 is 153355.

The example lacks a conditional check for the number of parameters; we will fix that a bit

later...

add.sh

Scripting

Computer Organization I

18

CS@VT ©2005-2016 McQuain

Control Structures: if/then

bash supports several different mechanisms for selection; the most basic is:

. . .

if [[condition]]; then

commands # executed iff condition eval to true

fi

. . .

NB: there is an older notation using single square brackets; for a discussion see:

http://mywiki.wooledge.org/BashFAQ/031

Be careful about the syntax here.

The spaces after "[[" and before "]]" are required, as is the semicolon!

http://mywiki.wooledge.org/BashFAQ/031

Scripting

Computer Organization I

19

CS@VT ©2005-2016 McQuain

Example

#! /bin/bash

if [[$# -ne 2]]; then

echo "Invocation: ./add.sh integer integer"

exit 1

fi

left=$1

right=$2

sum=$((left + right))

echo "$0 says the sum of $left and $right is $sum."

We can fix one problem with the adder script we saw earlier by adding a check on the
number of command-line parameters:

But we could make it better if we could process a variable number of command-line
parameters... that will come a bit later...

NB: integers are compared using

-gt, -lt, -ge, -le, -eq, -ne

add2.sh

Scripting

Computer Organization I

20

CS@VT ©2005-2016 McQuain

Control Structures: if variations

. . .

if [[condition]]; then

commands executed if condition evaluates true

else

commands executed if condition evaluates false

fi

. . .

. . .

if [[condition1]]; then

commands // condition1

elif [[condition2]]; then

commands // !condition1 && condition2

. . .

else

commands // !condition1 && !condition2 &&...

fi

. . .

Scripting

Computer Organization I

21

CS@VT ©2005-2016 McQuain

Example

#! /bin/bash

if [[$# -lt 2 || $# -gt 4]]; then

echo "Invocation: ./add.sh integer integer [integer [integer]] "

exit 1

fi

if [[$# -eq 2]]; then

echo "$0 says the sum of $1 and $2 is $(($1 + $2))."

elif [[$# -eq 3]]; then

echo "$0 says the sum of $1, $2 and $3 is $(($1 + $2 + $3))."

else

echo "$0 says the sum of $1, $2, $3 and $4 is $(($1 + $2 + $3 + $4))."

fi

exit 0

add3.sh

Scripting

Computer Organization I

22

CS@VT ©2005-2016 McQuain

Aside: File-related Tests

There are a number of expressions that can be used within the braces for the conditional,
for testing files, including:

-e FILE true iff FILE exists

-d FILE true iff FILE exists and is a directory

-r FILE true iff FILE exists and is readable

-w FILE true iff FILE exists and is writeable

-x FILE true iff FILE exists and is executable

-s FILE true iff FILE exists and has size > 0

The logical operator ! (not) can be prefixed to these tests.

Scripting

Computer Organization I

23

CS@VT ©2005-2016 McQuain

Aside: String-related Tests

There are a number of expressions that can be used within the braces for the conditional,
for testing strings, including:

-z STRING true iff STRING has length zero

-n STRING true iff STRING has length greater than zero

Strings may be compared via the following tests:

STR1 == STR2 true iff STR1 equals STR2

STR1 != STR2 true iff STR1 does not equal STR2

STR1 < STR2 true iff STR1 precedes STR2

STR1 > STR2 true iff STR1 succceeds STR2

Scripting

Computer Organization I

24

CS@VT ©2005-2016 McQuain

Aside: Integer-related Tests

There are a number of expressions that can be used within the braces for the conditional,
for testing integers, including:

I1 -eq I2 true iff I1 == I2

I1 –ne I2 true iff I1 != I2

I1 -lt I2 true iff I1 < I2

I1 –le I2 true iff I1 <= I2

I1 –gt I2 true iff I1 > I2

I1 –ge I2 true iff I1 >= I2

Scripting

Computer Organization I

25

CS@VT ©2005-2016 McQuain

Revised Script for Backups

#!/bin/bash

This script makes a backup of a directory to another server.

Invocation: ./backup2.sh DIRNAME

if [[$# -ne 1]]; then

echo "Invocation: ./backup2.sh DIRNAME"

exit 1

fi

if [[! -d $1]]; then

echo "$1 is not a directory"

exit 2

fi

BACKUPDIR=$1 # directory to be backed up

Change the values of the variables to make the script work for you:

TARFILE=/var/tmp/mybackup.tar # tar file created during backup

SERVER=ap1.cs.vt.edu # server to copy backup to

REMOTEID=wmcquain # your ID on that server

REMOTEDIR=/home/staff/wmcquain # dir to hold backup on server

LOGFILE=~/logs/backup.log # local log file recording backups

. . .

backup2.sh

adapted

from [2]

verify there is a command-line

parameter

and

that it names a directory

Scripting

Computer Organization I

26

CS@VT ©2005-2016 McQuain

Revised Script for Backups

. . .

Move into the directory to be backed up

cd $BACKUPDIR

Run tar to create the archive.

tar cf $TARFILE *

if [[$? -ne 0]]; then

echo "Aborting: tar returned error code $?"

exit 3

fi

Copy the file to another host.

scp $TARFILE $REMOTEID@$SERVER:$REMOTEDIR

if [[$? -ne 0]]; then

echo "Error: scp returned error code $?"

exit 4

fi

Create a timestamp in the logfile to record the backup operation.

echo "$BACKUPDIR: `date`" >> $LOGFILE

exit 0 # return 0 on success

backup.sh

adapted

from [2]

check exit code from tar

check exit code from scp

Scripting

Computer Organization I

27

CS@VT ©2005-2016 McQuain

Control Structures: while/do

bash supports several different mechanisms for iteration, including:

. . .

while [[condition]]; do

commands # executed iff condition eval to true

done

. . .

Scripting

Computer Organization I

28

CS@VT ©2005-2016 McQuain

Example

#! /bin/bash

if [[$# -ne 2]]; then

echo "Invocation: ./gcd.sh integer integer"

exit 1

fi

Apply Euclid's Algorithm to find GCD:

x=$1

y=$2

Operands need to be non-negative:

if [[x -lt 0]]; then x=$((-x))

fi

if [[y -lt 0]]; then y=$((-y))

fi

while [[y -gt 0]]; do

rem=$(($x % $y))

x=$y

y=$rem

done

Report GCD:

echo "GCD($1, $2) = $x"

exit 0

gcd.sh

Scripting

Computer Organization I

29

CS@VT ©2005-2016 McQuain

Control Structures: for/do

. . .

for VALUE in LIST; do

commands # executed on VALUE

done

. . .

for x in one two three four; do

str+=" $x"

echo "$str"

done

list="one two three four"

for x in $list; do

str+=" $x"

echo "$str"

done for1.sh

Scripting

Computer Organization I

30

CS@VT ©2005-2016 McQuain

Parameter List and for/do

#! /bin/bash

sum=0

if [[$# -eq 0]]; then

echo "Nothing to add"

exit 1

fi

for x; do

echo " $x"

sum=$(($sum + $x));

done

echo "sum: $sum"

exit 0

NB: if you omit "in LIST", it defaults

to "in $@", which is the

positional parameter list

bash > ./add4.sh 17 13 5 8 10 73

17

13

5

8

10

73

sum: 126

add4.sh

Scripting

Computer Organization I

31

CS@VT ©2005-2016 McQuain

Functions

bash supports defining functions that scripts can call.

A function simply groups a collection of instructions and gives the collection a name.

Parameters may be passed, but in the manner they're passed to a script by the command

shell – the syntax is not what you are used to.

The implementation of a function must occur before any calls to the function.

Variables defined within a function are (by default) accessible outside (after) the function

definition – that’s not what you are used to.

function funcname {

commands

}

Two syntaxes:
funcname() {

commands

}

Scripting

Computer Organization I

32

CS@VT ©2005-2016 McQuain

Defining a Function

In the backup script, we have the following block of code to create the archive file:

. . .

Move into the directory to be backed up

cd $BACKUPDIR

Run tar to create the archive.

tar cf $TARFILE *

if [[$? -ne 0]]; then

echo "Aborting: tar returned error code $?"

exit 3

fi

. . .

We can wrap this into a function interface, and take the name of the directory to be backed

up and the name to give the tar file parameters to the function…

Scripting

Computer Organization I

33

CS@VT ©2005-2016 McQuain

Defining and Calling a Function

We can wrap this into a function interface, and take the name of the directory to be backed

up and the name to give the tar file parameters to the function…

. . .

create_archive() { # param1: fully-qualified name of dir to backup

param2: name for tar file

Move into the directory to be backed up

cd $1

Run tar to create the archive.

echo "Creating archive file $2"

tar cf $2 *

if [[$? -ne 0]]; then

echo "Error: tar returned error code $?"

exit 3 # terminates script

fi

}

. . .

create the archive file

create_archive $BACKUPDIR $TARFILE

. . .

Scripting

Computer Organization I

34

CS@VT ©2005-2016 McQuain

Backup Script with Functions

#!/bin/bash

This script makes a backup of a directory to another server.

Invocation: ./backup3.sh DIRNAME

fn definitions

show_usage() {

echo "Invocation: ./backup2.sh DIRNAME"

}

get_directory_name() { # param1: fully-qualified name of dir to

backup

P1=$1

DIRNAME=${P1##*/} # HERE BE DRAGONS!

}

set_variables() {

Change the values of the variables to make the script work for you:

TARFILE=/var/tmp/$DIRNAME.tar # tar file created during backup

SERVER=ap1.cs.vt.edu # server to copy backup to

REMOTEID=wmcquain # your ID on that server

REMOTEDIR=/home/staff/wmcquain # dir to hold backup on server

LOGFILE=~/logs/backup.log # local log file recording backups

}

. . .

Scripting

Computer Organization I

35

CS@VT ©2005-2016 McQuain

Backup Script with Functions

. . .

create_archive() { # param1: fully-qualified name of dir to

backup

param2: name for tar file

Move into the directory to be backed up

cd $1

Run tar to create the archive.

echo "Creating archive file $2"

tar cf $2 *

if [[$? -ne 0]]; then

echo "Error: tar returned error code $?"

exit 3 # terminates script

fi

}

. . .

Scripting

Computer Organization I

36

CS@VT ©2005-2016 McQuain

Backup Script with Functions

. . .

copy_to_server() { # param1: fully-qualified name of tar file

param2: user name on server

param3: network name of server

param4: destination dir on server

Copy the file to another host.

echo "Copying $1 to $3:$4"

scp $1 $2@$3:$4

if [[$? -ne 0]]; then

echo "Error: scp returned error code $?"

exit 4 # terminates script

fi

}

. . .

Scripting

Computer Organization I

37

CS@VT ©2005-2016 McQuain

Backup Script with Functions

. . .

rm_archive() { # param1: full-qualified name of tar file

echo "Removing archive file $1"

rm -f $1

if [[$? -ne 0]]; then

echo "Error: rm returned error code $?"

exit 4 # terminates script

fi

}

log_backup() {

echo "$1: `date`" >> $2

}

. . .

Scripting

Computer Organization I

38

CS@VT ©2005-2016 McQuain

Backup Script with Functions

. . .

body of script

if [[$# -ne 1]]; then # check for a parameter

show_usage

exit 1

fi

if [[! -d $1]]; then # see if it's a directory

echo "$1 is not a directory"

exit 2

fi

BACKUPDIR=$1 # directory to be backed up

Get actual directory name (strip leading path info, if any)

get_directory_name $BACKUPDIR

set environment for backup

set_variables

. . .

Scripting

Computer Organization I

39

CS@VT ©2005-2016 McQuain

Backup Script with Functions

. . .

create the archive file

create_archive $BACKUPDIR $TARFILE

copy the archive file to the server

copy_to_server $TARFILE $REMOTEID $SERVER $REMOTEDIR

clean up archive file

rm_archive $TARFILE

Create a timestamp in the logfile to record the backup operation.

log_backup $BACKUPDIR $LOGFILE

exit 0 # return 0 on success

Scripting

Computer Organization I

40

CS@VT ©2005-2016 McQuain

Backup Script Execution

bash > ./backup3.sh ~/2505

Creating archive file /var/tmp/2505.tar

Copying /var/tmp/2505.tar to

ap1.cs.vt.edu:/home/staff/wmcquain

wmcquain@ap1.cs.vt.edu's password:

2505.tar 100% 90KB 90.0KB/s 00:00

Removing archive file /var/tmp/2505.tar

bash >

IMO, a good script provides the user with feedback about progress and success or failure.

Scripting

Computer Organization I

41

CS@VT ©2005-2016 McQuain

Here Be Dragons

In the backup script we need to strip any path information from the front of the fully-

qualified name for the directory to be backed up.

For example, we need to carry out the following transformation:

/home/wdm/2505 2505

Here's how we do it: . . .

DIRNAME=${P1##*/}

. . .

Here's how it works:
- "*/" stands for an arbitrary number of characters followed by a forward slash.

- "*/" is expanded to match the longest part of P1 that matches that pattern.

- In this case, it works out to be "/home/wdm/".

- This longest match is removed from P1, leaving "2505" in this case.

Since the path prefix must end with a forward slash, this gives us exactly what we want.

See page 128 in [2] if you want more discussion.

Scripting

Computer Organization I

42

CS@VT ©2005-2016 McQuain

Special Characters

begins comment (to end of line)

$ causes expansion of the following character

\ causes following character to NOT be special

/ path separator AND division operator
` command substitution

* wildcard for file name expansion

There are many characters that have special meaning to the bash shell, including:

A full discussion is available in Chapter 3 of [3].

These special characters may also occur in contexts, like input strings, in which we need
them to retain their normal meanings...

Scripting

Computer Organization I

43

CS@VT ©2005-2016 McQuain

Quoting: Double vs Single

bash > echo #702

bash > echo "#702"

#702

bash > echo 7$12

72

bash > echo "7$12"

72

Enclosing an expression in double quotes causes most, but not all, special characters to be
treated literally:

Enclosing an expression in single quotes causes all special characters to be treated
literally:

bash > echo '7$12'

7$12

It's usually good practice to enclose a variable evaluation in double quotes, since the

variable may be a string that may contain special characters that are not supposed to be
interpreted by the shell.

Scripting

Computer Organization I

44

CS@VT ©2005-2016 McQuain

Transforming Strings

${VAR:OFFSET:LENGTH}

Take LENGTH characters from $VAR, starting at OFFSET.

bash > str=mairzydoatsanddozydoats

bash > echo $str

mairzydoatsanddozydoats

bash > echo ${str:6:5}

doats

bash > echo $str

mairzydoatsanddozydoats

${VAR#WORD}

${VAR##WORD}

If WORD matches a prefix of $VAR, remove the shortest (longest) matching part of

$VAR and return what's left. '%' specifies a match at the tail of $VAR.

bash > echo ${str#mairzy}

doatsanddozydoats

bash > echo ${str%doats}

mairzydoatsanddozy

Scripting

Computer Organization I

45

CS@VT ©2005-2016 McQuain

Transforming Strings

bash > var=/home/user/johokie/2505

bash > echo ${var%/*}

/home/user/johokie

bash > echo ${var%%/*}

bash > echo ${var#*/}

home/user/johokie/2505

bash > echo ${var##*/}

2505

%/* matched "/2505" at end

%%/* matched everything from the end

#*/ matched nothing at the front

##*/ matched "/home/user/johokie/"

Scripting

Computer Organization I

46

CS@VT ©2005-2016 McQuain

Transforming Strings

bash > echo $var

/home/user/johokie/2505

bash > var2=$var/

bash > echo $var2

/home/user/johokie/2505/

bash > echo ${var2%/}

/home/user/johokie/2505 %/ matched "/" at end

NB: sometimes you get a path string from the command-line, and the user may or may
not have put a '/' on the end...

Scripting

Computer Organization I

47

CS@VT ©2005-2016 McQuain

Transforming Strings

${VAR/TOREPLACE/REPLACEMENT}

${VAR//TOREPLACE/REPLACEMENT}

Replace the first (all) occurrence(s) of TOREPLACE in $VAR with REPLACEMENT.

bash > echo $str

mairzydoatsanddozydoats

bash > echo ${str/doats/doates}

mairzydoatesanddozydoats

bash > echo ${str//doats/doates}

mairzydoatesanddozydoates

bash > echo $str

mairzydoatsanddozydoats

replaced 1st occurrence of "doats"

replaced both occurrences of "doats"

original is unchanged

Scripting

Computer Organization I

48

CS@VT ©2005-2016 McQuain

Example: unpacktars

bash > ls

aakallam.C3.11.tar dnguy06.C3.6.tar laura10.C3.1.tar samm.C3.5.tar

adahan.C3.5.tar domnap.C3.5.tar lucase93.C3.12 sammugg.C3.4.tar

aemoore.C3.5.tar dustinst.C3.7.tar magiks.C3.8.tar samp93.C3.13.tar

afritsch.C3.11.tar elena.C3.5.tar marcato.C3.5.tar sarahn93.C3.1.tar

One problem I needed to solve was that I had a directory of tar files submitted by

students, where each tar file contained the implementation of a program, perhaps
consisting of many files:

What I needed was to extract the contents of each student's submission to a separate

directory, named using the PID field from the name of the student's submission.

I also had to be concerned about the possibilities (at least):

- A submission might not be a tar file.

- There might be an error when extracting a tar file.

- Neither I nor my TAs wanted to do this manually.

Of course, the solution was to write a shell script...

Scripting

Computer Organization I

49

CS@VT ©2005-2016 McQuain

Design: unpacktars

The desired functionality led to some design decisions:

- Do not hard-wire any directory names.

- Optionally, let the target directory (holding the subdirectories for student

submissions) in a different, user-specified directory than the one that holds the tar

files.

- Do not require the target directory to exist already; if it does, do not clear it.

- Name the subdirectories using the student PIDs since those are unique and already

part of the tar file names.

- Provide the user with sensible feedback if anything goes wrong.

Scripting

Computer Organization I

50

CS@VT ©2005-2016 McQuain

unpacktars.sh: Verifying a File Type

#! /bin/bash

#

Invocation: unpacktars.sh tarFileDir extractionRoot

#

tarFileDir must name a directory containing tar files

tar file names are in the form fname.*.tar

extractionRoot is where the subdirs will go

#

For each file in the specified tar file directory:

If the file is a tar file

- a directory named dirname/fname is created

- the contents of the tar file are extracted into dirname/fname

#

fn to check for tar file

param1: name of file to be checked

isTar() {

mimeType=`file -b --mime-type $1`

[[$mimeType == "application/x-tar"]]

}

. . .

-b: omit filename from output

--mime-type: compact output

Scripting

Computer Organization I

51

CS@VT ©2005-2016 McQuain

unpacktars.sh: Extracting the PID

. . .

##################################### fn to extract PID from file name

param1: (possibly fully-qualified) name of file

getPID() {

fname=$1

strip off any leading path info

fname=${fname##*/}

extract first token of file name

spid=${fname%%.*}

}

. . .

"##*/"

remove longest leading
string ending with '/'

"%%.*"

remove longest trailing string
starting with '.'

Scripting

Computer Organization I

52

CS@VT ©2005-2016 McQuain

unpacktars.sh: Processing the tar File

. . .

##################################### fn to extract tar file to subdir

param1: root dir for subdirs

param2: full name of file

processTar() {

set PID from file name

getPID $2

create subdirectory for extracted files

mkdir "$1/$spid"

extract tar contents to that directory

tar -xf "$2" -C "$1/$spid"

if [[$? –ne 0]]; then

echo " Error extracting files from $2"

fi

}

. . .

"-C"

specify destination dir

check exit code from tar

Scripting

Computer Organization I

53

CS@VT ©2005-2016 McQuain

unpacktars.sh: Validating the Command Line

. . .

body

if [[$# -ne 2]]; then

echo "Usage: unpacktars.sh tarFileDir extractRoot"

exit 1

fi

parameter check

get 1st parameter; trim trailing '/'

srcdir=$1

srcdir=${srcdir%/}

verify it's a directory name

if [[! -d "$srcdir"]]; then

echo "First argument must be a directory"

exit 1

fi

. . .

"%/"

remove trailing '/', if any

Directory holding tar files to be
processed MUST already exist.

Scripting

Computer Organization I

54

CS@VT ©2005-2016 McQuain

unpacktars.sh: Validating the Command Line

. . .

get 2nd parameter; trim trailing '/'

trgdir=$2

trgdir=${trgdir%/}

if [[! -e "$trgdir"]]; then

echo "Creating $trgdir"

mkdir "$trgdir"

elif [[! -d "$trgdir"]]; then

echo "Error: $trgdir exists but is not a directory"

exit 2

fi

. . .

Target directory may or may not
already exist...

If it does not, create it.

This also detects a regular file
with the specified name.

If a regular file exists with that

name, we can't (safely) create a
the directory.

Scripting

Computer Organization I

55

CS@VT ©2005-2016 McQuain

unpacktars.sh: Processing the Directory

. . .

begin processing

echo "Processing files in $srcdir to $trgdir"

iterate through files in the directory

for tfile in $srcdir/*

do

verify we have a regular file

if [[-f "$tfile"]]; then

see if we have a tar file

isTar $tfile

if [[$? -eq 0]]; then

process the tar file

processTar $trgdir $tfile

else

notify user of stray file

echo " Found non-tar file $tfile"

fi

fi

done

exit 0

"tfile in $srcdir/*"

This will iterate over the files that

exist in the source directory.

Scripting

Computer Organization I

56

CS@VT ©2005-2016 McQuain

`Bibliography

[1] A Practical Guide to Linux Commands, Editors, and Shell Programming, 2nd Ed,

Mark G. Sobell, Pearson, 2010

[2] Bash Guide for Beginners, Machtelt Garrels, Version 1.11

(http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html)

[3] Advanced Bash Scripting Guide, Mendel Cooper, Version 6.6

(http://tldp.org/LDP/abs/html/index.html)

http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
http://tldp.org/LDP/abs/html/index.html

