
Bitwise Operators

Computer Organization I

1

CS@VT ©2005-2018 McQuain

Bitwise Operations

C includes operators that permit working with the bit-level representation of a

value.

You can:

- shift the bits of a value to the left or the right

- complement the bits of a value

- combine the corresponding bits of two values using logical AND

- combine the corresponding bits of two values using logical OR

- combine the corresponding bits of two values using logical XOR

When talking about bit representations, we normally label the bits with subscripts,

starting at zero, from low-order to high-order:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0b b b b b b b b b b b b b b b b

Bitwise Operators

Computer Organization I

2

CS@VT ©2005-2018 McQuain

Endian-ness

When a multi-byte value, like an int32_t, is stored in memory, there are options for

deciding how to organize the bytes physically:

89349210 0000 0101 0101 0011 0101 1100 0101 1010

Above, we organize the bytes from left-to-right, with the byte corresponding to the highest

powers of two on the left and the byte corresponding to the lowest powers of two on the

right.

But in memory there's no left or right.

Instead, each byte is stored at a specific address in memory, and so the int32_t value will

occupy four consecutive addresses.

So, do we put the high-order byte at the low address? or at the high address:? or…?

Bitwise Operators

Computer Organization I

3

CS@VT ©2005-2018 McQuain

Endian-ness

8934921010 0000 0101 0101 0011 0101 1100 0101 1010

On little-endian systems, the high-order byte is stored at the high address (and the low-

order byte is stored at the low address):

high address

0000 0101

0101 0011

0101 1100

0101 1010

low address

On big-endian systems, the high-order byte is stored at the low address (and the low-order

byte is stored at the high address).

x86 systems generally use little-endian byte ordering.

The JVM generally uses big-endian byte ordering.

Note that the bits within a byte are

always stored in little-endian order,

high-order bit first.

Bitwise Operators

Computer Organization I

4

CS@VT ©2005-2018 McQuain

Endian-ness

In most situations, you don't need to consider the byte-ordering used on your system.

The compiler and other tools are system-specific and will adjust for the correct ordering.

But, if you view a memory dump, like a hex dump of a binary file, or if you examine the

contents of memory via pointers, you must be aware of the particular byte-ordering that's

used on your system.

And, if you transfer some binary files created on a system using one byte-ordering to a

system using the opposite byte-ordering, you will have to compensate for that.

Bitwise Operators

Computer Organization I

5

CS@VT ©2005-2018 McQuain

Bitwise Shifts

You can shift the bits of a value to the left or the right by using the shift operators
>> and <<.

Assuming the right operand is non-negative and no larger than the bit-width of the

integer-valued left operand:

EL << ER

The bits of EL are shifted ER positions to the left;

zeros fill the vacated positions on the right;

the resulting value is returned.

EL >> ER

If EL is unsigned, or signed and non-negative, returns the value of

the integer EL / 2ER;

if EL is signed and negative, the result is implementation-dependent.

Bitwise Operators

Computer Organization I

6

CS@VT ©2005-2018 McQuain

Bitwise Shifts with gcc

Suppose that we have the following variables:

int32_t X = 24061; // 00000000 00000000 01011101 11111101

int32_t Y = -39; // 11111111 11111111 11111111 11011001

A little experimentation with gcc verifies that:

X << 5 --> 00000000 00001011 10111111 10100000

X >> 5 --> 00000000 00000000 00000010 11101111

Y << 10 --> 11111111 11111111 01100100 00000000

Y >> 4 --> 11111111 11111111 11111111 11111101

Bitwise Operators

Computer Organization I

7

CS@VT ©2005-2018 McQuain

Shifting and Arithmetic

Suppose again that we have the following variables:

int32_t X = 24061; // 00000000 00000000 01011101 11111101

int32_t Y = -39; // 11111111 11111111 11111111 11011001

A little experimentation with gcc verifies that:

X << 5 --> 769952 == 24061 * 25 OK

X >> 5 --> 751 == 24061 / 25 OK

Y << 10 --> -39936 == -39 * 210 OK

Y >> 4 --> -3 == -39 / 24 ?

Bitwise Operators

Computer Organization I

8

CS@VT ©2005-2018 McQuain

Bitwise Complement

Logical complement (logical negation) is defined by the following table:

X ~X

0 1

1 0

In C, the bitwise complement (negation) operation is represented by ~.

Again, this operator is normally applied to multi-bit operands of Standard C types.

Bitwise Operators

Computer Organization I

9

CS@VT ©2005-2018 McQuain

Bitwise AND and OR

Logical AND and OR are defined by the following tables:

X Y X AND Y X OR Y

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

In C, these bitwise operations are represented by & and |, respectively.

Normally, though, the operators are applied to multi-bit operands of Standard C types.

Bitwise Operators

Computer Organization I

10

CS@VT ©2005-2018 McQuain

Bitwise XOR

Logical XOR is defined by the following table:

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

In C, the bitwise XOR operation is represented by ^.

Again, this operator is normally applied to multi-bit operands of Standard C types.

Bitwise Operators

Computer Organization I

11

CS@VT ©2005-2018 McQuain

Bitmasks

C programmers often create a mask to use with bitwise operators in order to facilitate some

higher-level task:

bool isMultOf4(int32_t Value) {

uint32_t Mask = 0x00000003; // 0000 0000 . . . 0000 0011

int32_t low2bits = Value & Mask;

return low2Bits == 0x0;

}

Bitwise Operators

Computer Organization I

12

CS@VT ©2005-2018 McQuain

Example: Clearing a Bit

Suppose you want to clear (set to 0) a single bit of a bit-sequence; say you want to clear bit
b6 of the following C int32_t value:

31 30 29 28 9 8 7 6 5 4 3 2 1 0b b b b b b b b b b b b b b

The following C code would do the trick:

int32_t X = 24061; // 00000000 00000000 01011101 11111101

int32_t Mask = 1 << 6; // 0000 . . . 0000 0100 0000

Mask = ~Mask; // 11111111 11111111 11111111 10111111

X = X & Mask; // preserves every value in X except

// for bit #6

QTP: how would you set a specific bit (to 1)?

Bitwise Operators

Computer Organization I

13

CS@VT ©2005-2018 McQuain

Example: Printing the Bits of a Byte

Alas, C does not provide any format specifiers (or other feature) for displaying the bits of a

value. But, we can always roll our own:

void printByte(FILE *fp, uint8_t Byte) {

uint8_t Mask = 0x80; // 1000 0000

for (int bit = 8; bit > 0; bit--) {

fprintf(fp, "%c", ((Byte & Mask) == 0 ? '0' : '1'));

Mask = Mask >> 1; // move 1 to next bit down

}

}

It would be fairly trivial to modify this to print the bits of "wider" C types.

We'll see a flexible driver for this, using pointers, on a later slide.

Bitwise Operators

Computer Organization I

14

CS@VT ©2005-2018 McQuain

Example: Details

void printByte(FILE *fp, uint8_t Byte) {

uint8_t Mask = 0x80; // 1000 0000

. . .

Mask = Mask >> 1; // move 1 to next bit down

. . .

}

Mask has a 1 in position k and 0's elsewhere, with k between 7 and 0:

initially: 1000 0000

then: 0100 0000

then: 0010 0000

. . .

then: 0000 0001

Bitwise Operators

Computer Organization I

15

CS@VT ©2005-2018 McQuain

Example: Details

void printByte(FILE *fp, uint8_t char Byte) {

. . .

. . . (Byte & Mask) . . .;

. . .

}

Byte & Mask == k-th bit of Byte surrounded by zeros.

Say that Byte was 1011 0110, then Byte & Mask would be:

initially: 1000 0000

then: 0000 0000

then: 0010 0000

. . .

So, Mask essentially plays the role of a (logical) pointer, allowing us to pick out the

individual bits of Byte one by one.

Bitwise Operators

Computer Organization I

16

CS@VT ©2005-2018 McQuain

Example: Details

void printByte(FILE *fp, uint8_t Byte) {

. . .

. . . (Byte & Mask) == 0 ? '0' : '1') . . .

. . .

}

The ternary operator expression:

evaluates the Boolean expression

returns the first value after the ? if the Boolean expression is true

returns the second value after the ? if the Boolean expression is false

Basically, this lets us convert the 8-bit value of Byte & Mask to a single character.

Bitwise Operators

Computer Organization I

17

CS@VT ©2005-2018 McQuain

Example: Printing the Bits with Pointers

void printBits(FILE *fp, uint8_t* source,

uint32_t Length) {

// QTP: why is pCurrByte initialized this way?

uint8_t* pCurrByte = source + Length - 1;

for (uint8_t byte = 0; byte < Length; byte++) {

uint8_t currByte = *pCurrByte;

printByte(fp, currByte); // print bits of

// current byte

if (byte < Length - 1) // separate the bytes

fprintf(fp, " ");

pCurrByte--;

}

}

Bitwise Operators

Computer Organization I

18

CS@VT ©2005-2018 McQuain

Example: Integer Division

According to the Quotient/Remainder Theorem, given two integers x and y, where y is not

zero, there are unique integers q and r such that:

and

q is called the quotient and r is called the remainder.

We all remember how to compute q and r by performing long division.

Hardware to perform integer division tends to be complex and require many machine cycles

to compute a result.

For example, one source indicates that executing an integer division instruction on an Intel

SandyBridge CPU may require 29 clock cycles for 32-bit operands and 92 for 64-bit

operands!

x q y r

0 r y

Bitwise Operators

Computer Organization I

19

CS@VT ©2005-2018 McQuain

Example: Integer Division

However, some special cases allow us to divide without dividing.

Suppose we want to divide an integer N by a power of 2, say 2K.

Then, mathematically, the quotient is just N shifted K bits to the right and the remainder is

just the right-most K bits of N.

So, we can obtain the quotient and remainder by applying bitwise operations:

0000 0000 0000 0000 0000 0000 0011 1101 8

N: 61 divisor

q: 7 r: 5

Bitwise Operators

Computer Organization I

20

CS@VT ©2005-2018 McQuain

Example: Integer Division

But how does this really work?

0000 0000 0000 0000 0000 0000 0011 1101 N

& 1111 1111 1111 1111 1111 1111 1111 1000 mask

Bitwise AND applied to N with the right "mask" will wipe out the low bits.

Put 1's where you want to copy existing bits in N and 0's where you want to clear bits.

Of course, that yields this:

0000 0000 0000 0000 0000 0000 0011 1000

We could shift this result right by 3 bits (remember we're dividing by 23), but it would have

been just as easy (and more efficient) to just shift the original representation of N:

q = N >> 3;

Bitwise Operators

Computer Organization I

21

CS@VT ©2005-2018 McQuain

Example: Integer Division

What about the remainder? Use a different mask:

0000 0000 0000 0000 0000 0000 0011 1101 N

& 0000 0000 0000 0000 0000 0000 0000 0111 mask

Of course, that yields this:

0000 0000 0000 0000 0000 0000 0000 0101

So in C:

r = N & mask;

QTP: how do we form the mask if we're given the divisor, and we know it's a power of 2,

but we do not know what power of 2 it is?

Hint: consider the relationship between the base-2 representations of 2K and 2K-1

Bitwise Operators

Computer Organization I

22

CS@VT ©2005-2018 McQuain

Example: Flipping Bytes

uint16_t flipBytes(uint16_t N) {

uint16_t hiByte = N & 0xFF00; // AND with 1111 1111 0000 0000

hiByte = hiByte >> 8; // shift hi byte to lower half

N = N << 8; // shift lo byte to upper half

N = N | hiByte; // combine the bytes

return N;

}

Bitwise Operators

Computer Organization I

23

CS@VT ©2005-2018 McQuain

Example: Summing Nybbles

uint16_t addNybbles(uint16_t N) {

return ((N & 0x000F) + // get nybble 0

((N & 0x00F0) >> 4) + // get nybble 1

((N & 0x0F00) >> 8) + // get nybble 2

((N & 0xF000) >> 12)); // get nybble 3

}

Bitwise Operators

Computer Organization I

24

CS@VT ©2005-2018 McQuain

Example: Zeroing Selected Nybbles

uint16_t zeroOddNybbles(uint16_t N) {

if ((N & 0x0001) != 0) {

N = N & 0xFFF0;

}

if ((N & 0x0010) != 0) {

N = N & 0xFF0F;

}

if ((N & 0x0100) != 0) {

N = N & 0xF0FF;

}

if ((N & 0x1000) != 0) {

N = N & 0x0FFF;

}

return N;

}

