Positional Notation

A positional or place-value notation is a numeral system in which each position is related to the next by a constant multiplier, called the *base* or *radix* of that numeral system.

The value of each digit position is the value of its digit, multiplied by a power of the base; the power is determined by the digit's position.

The value of a positional number is the total of the values of its positions.

So, in positional base-10 notation:

$$73901 = 7 \times 10^4 + 3 \times 10^3 + 9 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$$

And, in positional base-2 notation:

$$10010000010101101 = 1 \times 2^{16} + 1 \times 2^{13} + 1 \times 2^{7} + 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{0}$$

Why is the second example a cheat?

Do not confuse the representation with the number!

Each of the following examples is a <u>representation</u> of the same number:

Do not make the mistake of thinking that there is such a thing as "a base-10 number" or "a base-16 number".

There is a unique base-10 <u>representation</u> of every integer and there is a unique base-16 <u>representation</u> of every integer.

Given a base-10 representation of an integer value, the base-2 representation can be calculated by successive divisions by 2:

73901	Remainder	
36950	1 \	
18475	0	
9237	1	
4618	1	
2309	0	
1154	1	
577	0	
288	1	
144	0	$> 10010000010101101_2$
72	0	(
36	0	
18	0	
9	0	
4	1	
2	0	
1	0	
0	1 /	

Converting from base-2 to base-10

Given a base-2 representation of an integer value, the base-10 representation can be calculated by simply expanding the positional representation:

$$100100000101101_{2} = 1 \cdot 2^{16} + 1 \cdot 2^{13} + 1 \cdot 2^{7} + 1 \cdot 2^{5} + 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{0}$$

$$= 65536 + 8192 + 128 + 32 + 8 + 4 + 1$$

$$= 73901$$

Other Bases

Are analagous... given a base-10 representation of an integer value, the base-16 representation can be calculated by successive divisions by 16:

	Remainder	73901
	13> D	4618
	10> A	288
$> 120AD_{16}$	0	18
	2	1
	1	0

The choice of base determines the set of numerals that will be used.

base-16 (hexadecimal or simply hex)

numerals: 0 1 ... 9 A B C D E F

Given a base-2 representation of an integer value, the base-16 representation can be calculated by simply converting the nybbles:

The same basic "trick" works whenever the target base is a power of the source base:

```
10 010 000 010 101 101
2 2 0 2 5 5 : octal
```

base-2 binary 0 1

base-8 octal 0 1 2 3 4 5 6 7

base-10 decimal 0 1 2 3 4 5 6 7 8 9

base-16 hex 0 1 2 3 4 5 6 7 8 9 A B C D E F