A positional or place-value notation is a numeral system in which each position is related to the next by a constant multiplier, called the base or radix of that numeral system.

The value of each digit position is the value of its digit, multiplied by a power of the base; the power is determined by the digit's position.

The value of a positional number is the total of the values of its positions.

So, in positional base-10 notation:

$$
73901=7 \times 10^{4}+3 \times 10^{3}+9 \times 10^{2}+0 \times 10^{1}+1 \times 10^{0}
$$

And, in positional base-2 notation:

$$
10010000010101101=1 \times 2^{16}+1 \times 2^{13}+1 \times 2^{7}+1 \times 2^{5}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{0}
$$

Why is the second example a cheat?

Vital Point

Do not confuse the representation with the number!
Each of the following examples is a representation of the same number:

$$
255_{10}
$$

$$
11111111_{2}
$$

$$
\mathrm{FF}_{16}
$$

$$
2010_{5}
$$

377_{8}

$$
3333_{4}
$$

Do not make the mistake of thinking that there is such a thing as "a base-10 number" or "a base-16 number".

There is a unique base- 10 representation of every integer and there is a unique base-16 representation of every integer.

Converting from base-10 to base-2

Given a base-10 representation of an integer value, the base- 2 representation can be calculated by successive divisions by 2 :
$\left.\begin{array}{rc}73901 & \text { Remainder } \\ 36950 & 1 \\ 18475 & 0 \\ 9237 & 1 \\ 4618 & 1 \\ 2309 & 0 \\ 1154 & 1 \\ 577 & 0 \\ 288 & 1 \\ 144 & 0 \\ 72 & 0 \\ 36 & 0 \\ 18 & 0 \\ 9 & 0 \\ 4 & 1 \\ 2 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right\} 10010000010101101_{2}$

Converting from base-2 to base-10

Given a base- 2 representation of an integer value, the base-10 representation can be calculated by simply expanding the positional representation:

$$
\begin{aligned}
10010000010101101_{2} & =1 \quad 2^{16}+1 \quad 2^{13}+1 \quad 2^{7}+1 \quad 2^{5}+1 \quad 2^{3}+1 \quad 2^{2}+1 \quad 2^{0} \\
& =65536+8192+128+32+8+4+1 \\
& =73901
\end{aligned}
$$

Are analagous... given a base-10 representation of an integer value, the base-16 representation can be calculated by successive divisions by 16 :

The choice of base determines the set of numerals that will be used.
base-16 (hexadecimal or simply hex)

$$
\text { numerals: } 01 \ldots 9 \text { A B C D E F }
$$

Converting from base-2 to base-16

Given a base- 2 representation of an integer value, the base- 16 representation can be calculated by simply converting the nybbles:

```
1 0010 0000 1010 1101
1 2 0 A D : hex
```

The same basic "trick" works whenever the target base is a power of the source base:

```
10 010 000 010 101 101
    2 2 0 2 5 5 : octal
```

Important Bases in Computing

```
base-2
binary
    01
base-8
octal
01234567
base-10
decimal
0123456789
base-16 hex
0123456789 A B C D E F
```

