
Advanced Pointer Ideas

Computer Organization I

1

CS@VT ©2005-2018 McQuain

Pass-by-Pointer

Pointers are also used in C to enable a function to modify a variable held by the caller:

void findExtrema(const int *pA, int Sz, int *pMin, int *pMax) {

*pMin = *pMax = pA[0]; // prime the min/max values

for (int idx = 1; idx < Sz; idx++) {

int Current = pA[idx]; // avoid extra array

// index operations

if (Current < *pMin)

*pMin = Current;

else if (Current > *pMax)

*pMax = Current;

}

}

Advanced Pointer Ideas

Computer Organization I

2

CS@VT ©2005-2018 McQuain

Pass-by-Pointer

Pointers are also used in C to enable a function to modify a variable held by the caller:

void findExtrema(const int *pA, int Sz, int *pMin, int *pMax) {

*pMin = *pMax = pA[0]; // prime the min/max values

for (int idx = 1; idx < Sz; idx++) {

int Current = pA[idx]; // avoid extra array

// index operations

if (Current < *pMin)

*pMin = Current;

else if (Current > *pMax)

*pMax = Current;

}

} // calling side:

int List[5] = {34, 17, 22, 89, 4};

int lMin = 0, lMax = 0;

findExtrema(List, 5, &lMin, &lMax);

Advanced Pointer Ideas

Computer Organization I

3

CS@VT ©2005-2018 McQuain

Returning a Pointer (Good)

Pointers can also be used as return values:

double* createArray(int Sz) {

double *p = malloc(Sz * sizeof(double));

if (p != NULL) {

for (int idx = 0; idx < Sz; idx++)

p[idx] = 0.0;

}

return p; // ownership goes to caller

}

. . .

double *Array = createArray(1000);

. . .

Advanced Pointer Ideas

Computer Organization I

4

CS@VT ©2005-2018 McQuain

Returning a Pointer (Bad)

But… NEVER return a pointer to an automatic local object:

int* F() {

int Local = rand() % 1000;

// Local ceases to exist when F()

// executes its return, since Local has

// automatic storage duration.

return &Local;

}

. . .

int *p = F();

. . .

C:\Code> gcc-4 -o P5 –std=c99 P5.c

P5.c: In function 'F':

P5.c:32: warning: function returns address of local variable

Advanced Pointer Ideas

Computer Organization I

5

CS@VT ©2005-2018 McQuain

Pointers and const

const can be applied in interesting ways in pointer contexts:

int* p; // pointer and target can both be changed

const int* p; // pointer can be changed; target cannot

int* const p; // target can be changed; pointer cannot

const int* const p; // neither pointer nor target can be changed

In the latter two cases, unless you are declaring a parameter, you must initialize the

pointer in its declaration.

This provides safety against inadvertent changes to a pointer and/or its target, and is

certainly an under-used feature in C.

void findExtrema(const int* const pA, int Sz, int* const pMin,

int* const pMax);

Advanced Pointer Ideas

Computer Organization I

6

CS@VT ©2005-2018 McQuain

Using const with Pointers

Here's an improved version of the findExtrema() function:

void findExtrema(const int * const pA, // 1

int Sz,

int * const pMin, // 2

int * const pMax) {

. . .

}

1: Now, the function cannot make pA point to anything else, nor can it change the

values in the array that pA points to.

2: Now, the function cannot make pMin or pMax point to anything else, but we do

need to let it change the values of the targets of pMin and pMax.

Advanced Pointer Ideas

Computer Organization I

7

CS@VT ©2005-2018 McQuain

void Pointers

void* p; // target can be of ANY type; so no compile-time

// type-checking occurs

In C, a pointer may be declared of type void:

void pointers are not useful in many situations:

- the return value from malloc() is actually a void*

- they can be used to achieve generic programming, often with data structures, but also

with a number of useful functions:

void* memcpy(void* s1, const void* s2, size_t n);

// The memcpy function copies n characters from the object

// pointed to by s2 into the object pointed to by s1. If

// copying takes place between objects that overlap, the

// behavior is undefined.

// Returns: the memcpy function returns the value of s1.

Advanced Pointer Ideas

Computer Organization I

8

CS@VT ©2005-2018 McQuain

Pointers to Pointers

A pointer can point to a pointer. One use of this is to pass a pointer so that a function can

modify it:

void createArray(double** const A, int Sz) {

double* p = malloc(Sz * sizeof(double));

if (p != NULL) {

for (int idx = 0; idx < Sz; idx++)

p[idx] = 0.0;

}

*A = p;

}

. . .

double *Array;

createArray(&Array, 1000);

. . .

Advanced Pointer Ideas

Computer Organization I

9

CS@VT ©2005-2018 McQuain

Dereferencing a Pointer

We said earlier that dereferencing a pointer yields the target of the pointer.

But, there's a bit more to it than that… the C Standard says that:

- if the operand p points to an object then the result of *p is a lvalue designating the

object

- if the operand p is of type "pointer to type" then the result of *p has type type

(An lvalue is "an expression … that potentially designates an object".)

Advanced Pointer Ideas

Computer Organization I

10

CS@VT ©2005-2018 McQuain

Pointer Casts

Pointer typecasting can be used to define the amount of data dereferencing yields.

Suppose that you run a program and give it your PID as a parameter:

uint32_t limit = (uint32_t)(*(uint32_t*)argv[1]);

CentOS > prog wmcquain
argv[0] --> "prog"

argv[1] --> "wmcquain"

Then suppose the code in main() does this:

Advanced Pointer Ideas

Computer Organization I

11

CS@VT ©2005-2018 McQuain

Pointer Casts

The pointer cast takes the pointer argv[1] and

produces a nameless pointer of type uint32_t*

. . . (uint32_t*)argv[1]);

. . . *(uint32_t*)argv[1]);

Dereferencing that pointer yields 4 bytes of
data, because the target of a uint32_t* is 4

bytes in size.

. . .(uint32_t)(*(uint32_t*)argv[1]);

The final typecast tells the compiler to interpret

those 4 bytes as representing an unsigned
integer value.

"wmcq" --> 77 6D 63 71 0x71636D77 --> 1902341495

Advanced Pointer Ideas

Computer Organization I

12

CS@VT ©2005-2018 McQuain

Pointer Casts

Suppose the pointer p points to the beginning of a memory region:

43 17 00 A2 98 BB 0C 80 F2 DA

p

(uint8_t)p

(uint16_t)p

(uint64_t)p

(uint32_t)p

