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Pass-by-Pointer

Pointers are also used in C to enable a function to modify a variable held by the caller:

void findExtrema(const int *pA, int Sz, int *pMin, int *pMax) {

*pMin = *pMax = pA[0];           // prime the min/max values

for (int idx = 1; idx < Sz; idx++) {

int Current = pA[idx];      // avoid extra array 

//   index operations

if ( Current < *pMin )

*pMin = Current;

else if ( Current > *pMax )

*pMax = Current;

}

}
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Pass-by-Pointer

Pointers are also used in C to enable a function to modify a variable held by the caller:

void findExtrema(const int *pA, int Sz, int *pMin, int *pMax) {

*pMin = *pMax = pA[0];           // prime the min/max values

for (int idx = 1; idx < Sz; idx++) {

int Current = pA[idx];      // avoid extra array 

//    index operations

if ( Current < *pMin )

*pMin = Current;

else if ( Current > *pMax )

*pMax = Current;

}

} // calling side:

int List[5] = {34, 17, 22, 89, 4};

int lMin = 0, lMax = 0;

findExtrema(List, 5, &lMin, &lMax);
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Returning a Pointer (Good)

Pointers can also be used as return values:

double* createArray(int Sz) {

double *p = malloc( Sz * sizeof(double));

if ( p != NULL ) {

for (int idx = 0; idx < Sz; idx++)

p[idx] = 0.0;

}

return p; // ownership goes to caller

}

. . .

double *Array = createArray(1000);

. . .
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Returning a Pointer (Bad)

But… NEVER return a pointer to an automatic local object:

int* F() {

int Local = rand() % 1000;

// Local ceases to exist when F()

// executes its return, since Local has

// automatic storage duration.

return &Local;

}

. . .

int *p = F();

. . .

C:\Code> gcc-4 -o P5 –std=c99 P5.c

P5.c: In function 'F':

P5.c:32: warning: function returns address of local variable
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Pointers and const

const can be applied in interesting ways in pointer contexts:

int* p;              // pointer and target can both be changed

const int* p;        // pointer can be changed; target cannot

int* const p;        // target can be changed; pointer cannot

const int* const p;  // neither pointer nor target can be changed

In the latter two cases, unless you are declaring a parameter, you must initialize the 

pointer in its declaration.

This provides safety against inadvertent changes to a pointer and/or its target, and is 

certainly an under-used feature in C.

void findExtrema(const int* const pA, int Sz, int* const pMin, 

int* const pMax);
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Using const with Pointers

Here's an improved version of the findExtrema() function:

void findExtrema(const int * const pA, // 1 

int Sz, 

int * const pMin, // 2

int * const pMax) {   

. . .

}

1: Now, the function cannot make pA point to anything else, nor can it change the 

values in the array that pA points to. 

2: Now, the function cannot make pMin or pMax point to anything else, but we do 

need to let it change the values of the targets of pMin and pMax. 
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void Pointers

void* p;      // target can be of ANY type; so no compile-time 

//    type-checking occurs

In C, a pointer may be declared of type void:

void pointers are not useful in many situations:

- the return value from malloc() is actually a void*

- they can be used to achieve generic programming, often with data structures, but also 

with a number of useful functions:

void* memcpy(void* s1, const void* s2, size_t n);

// The memcpy function copies n characters from the object 

// pointed to by s2 into the object pointed to by s1. If

// copying takes place between objects that overlap, the

// behavior is undefined.

// Returns: the memcpy function returns the value of s1.
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Pointers to Pointers

A pointer can point to a pointer.  One use of this is to pass a pointer so that a function can 

modify it:

void createArray(double** const A, int Sz) {

double* p = malloc( Sz * sizeof(double));

if ( p != NULL ) {

for (int idx = 0; idx < Sz; idx++)

p[idx] = 0.0;

}

*A = p;

}

. . .

double *Array;

createArray(&Array, 1000);

. . .
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Dereferencing a Pointer

We said earlier that dereferencing a pointer yields the target of the pointer.

But, there's a bit more to it than that… the C Standard says that:

- if the operand p points to an object then the result of *p is a lvalue designating the 

object

- if the operand p is of type "pointer to type" then the result of *p has type type

(An lvalue is "an expression … that potentially designates an object".)
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Pointer Casts

Pointer typecasting can be used to define the amount of data dereferencing yields.

Suppose that you run a program and give it your PID as a parameter:

uint32_t limit = (uint32_t)(*(uint32_t*)argv[1]);

CentOS > prog wmcquain
argv[0] --> "prog"

argv[1] --> "wmcquain"

Then suppose the code in main() does this:



Advanced Pointer Ideas

Computer Organization I

11

CS@VT ©2005-2018 McQuain

Pointer Casts

The pointer cast takes the pointer argv[1] and 

produces a nameless pointer of type uint32_t*

. . . (uint32_t*)argv[1]);

. . . *(uint32_t*)argv[1]);

Dereferencing that pointer yields 4 bytes of 
data, because the target of a uint32_t* is 4 

bytes in size. 

. . .(uint32_t)(*(uint32_t*)argv[1]);

The final typecast tells the compiler to interpret 

those 4 bytes as representing an unsigned 
integer value.

"wmcq" --> 77 6D 63 71 0x71636D77 --> 1902341495
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Pointer Casts

Suppose the pointer p points to the beginning of a memory region:

43 17 00 A2 98 BB 0C 80 F2 DA

p

*(uint8_t*)p

*(uint16_t*)p

*(uint64_t*)p

*(uint32_t*)p


