I Pass-by-Pointer Advanced Pointer Ideas 1

Pointers are also used in C to enable a function to modify a variable held by the caller:

void findExtrema (const int *pA, int Sz, 1int *pMin,

for (int i1dx = 1; 1dx < Sz; idx++) {

*pMin = *pMax = pA[0]; // prime the min/max values

int Current = pA[idx]; // avoid extra array
// index operations
if ( Current < *pMin )
*pMin = Current;
else if ( Current > *pMax )
*pMax = Current;

int *pMax) {

CS@VT Computer Organization |

©2005-2018 McQuain



I Pass-by-Pointer Advanced Pointer Ideas 2

Pointers are also used in C to enable a function to modify a variable held by the caller:

void findExtrema (const int *pA, int Sz, int *pMin, int *pMax) {
*pMin = *pMax = pA[0]; // prime the min/max values

for (int i1dx = 1; 1dx < Sz; idx++) {

int Current = pA[idx]; // avoid extra array
// index operations
if ( Current < *pMin )
*pMin = Current;
else if ( Current > *pMax )
*pMax = Current;
}
} // calling side:
int List[b] = {34, 17, 22, 89, 4};

int IMin = 0, 1Max = 0;

findExtrema (List, 5, &1Min, &lMax):;

CS@VT Computer Organization | ©2005-2018 McQuain



I Returning a Pointer (Good) Advanced Pointer Ideas 3

Pointers can also be used as return values:

double* createArray(int Sz) {

double *p = malloc( Sz * sizeof (double));

= NULL ) {
int idx = 0; 1dx < Sz; idx++)

if (p !
(
plidx] = 0.0;

for

return p; // ownership goes to caller

double *Array = createArray(1000);

CS@VT Computer Organization | ©2005-2018 McQuain



I Returning a Pointer (Bad)

Advanced Pointer Ideas 4

But... NEVER return a pointer to an automatic local object:

int* F() |

int Local = rand() % 1000;
// Local ceases to exist when F ()
// executes 1ts return, since Local has

// automatic storage duration.

return &Local;

int *p = F();

CS@VT

C:\Code> gcc-4 -o P5 -std=c99 P5.c

P5.c: In function 'F':
P5.c:32: warning: function returns address

of local variable

Computer Organization |

©2005-2018 McQuain



. Pointers and const Advanced Pointer Ideas 5

const can be applied in interesting ways in pointer contexts:

int* p; // pointer and target can both be changed
const int* p; // pointer can be changed; target cannot
int* const p; // target can be changed; pointer cannot
const int* const p; // neither pointer nor target can be changed

In the latter two cases, unless you are declaring a parameter, you must initialize the
pointer in its declaration.

This provides safety against inadvertent changes to a pointer and/or its target, and is
certainly an under-used feature in C.

void findExtrema (const int* const pA, int Sz, int* const pMin,
int* const pMax);

CS@VT Computer Organization | ©2005-2018 McQuain



I Using const with Pointers Advanced Pointer Ideas 6

Here's an improved version of the findExtrema () function:

void findExtrema (const int * const paA, // 1
int Sz,
int * const pMin, // 2
int * const pMax) {

1:  Now, the function cannot make pA point to anything else, nor can it change the
values in the array that pA points to.

2:  Now, the function cannot make pMin or pMax point to anything else, but we do
need to let it change the values of the targets of pMin and pMax.

CS@VT Computer Organization | ©2005-2018 McQuain



. void Pointers Advanced Pointer Ideas 7

In C, a pointer may be declared of type void:

void* p; // target can be of ANY type; so no compile-time
// type-checking occurs

void pointers are not useful in many situations:

- the return value frommalloc () isactuallya void*

- they can be used to achieve generic programming, often with data structures, but also
with a number of useful functions:

void* memcpy (void* sl, const void* s2, size t n);

// The memcpy function copies n characters from the object
// pointed to by s2 into the object pointed to by sl. If
// copying takes place between objects that overlap, the
// behavior is undefined.

// Returns: the memcpy function returns the value of sl.

CS@VT Computer Organization | ©2005-2018 McQuain



™ Pointers to Pointers

Advanced Pointer I[deas 8

A pointer can point to a pointer. One use of this is to pass a pointer so that a function can

modify it:

void createArray (double** const A,

if ( p != NULL ) {
for (int idx = 0;
plidx] = 0.0;

idx < Sz;

int Sz) {

double* p = malloc( Sz * sizeof (double));

1dx++)

double *Array;
createArray (&Array,

1000) ;

CS@VT Computer Organization |

©2005-2018 McQuain



B Dereferencing a Pointer Advanced Pointer Ideas 9

We said earlier that dereferencing a pointer yields the target of the pointer.

But, there's a bit more to it than that... the C Standard says that:

- if the operand p points to an object then the result of *p is a lvalue designating the
object

- if the operand p is of type "pointer to type" then the result of *p has type type

(An lvalue is "an expression ... that potentially designates an object".)

CS@VT Computer Organization | ©2005-2018 McQuain



" Pointer Casts Advanced Pointer Ideas 10

Pointer typecasting can be used to define the amount of data dereferencing yields.

Suppose that you run a program and give it your PID as a parameter:

argv[0] --> "prog"
CentOS > prog wmcquain
argv[l] --> "wmcquain"

Then suppose the code inmain () does this:

uint32 t limit = (uint32 t) (* (uint32_t*)argv[1l]);

CS@VT Computer Organization | ©2005-2018 McQuain



. Pointer Casts Advanced Pointer Ideas 11

(uint32 _t*)argvl[l]);

The pointer cast takes the pointer argv [1] and
produces a nameless pointer of type uint32 t*

*(uint32_t*)argv([1l]);

Dereferencing that pointer yields 4 bytes of
data, because the target of a uint32 t*is4
bytes in size.

. (uint32_t) (* (uint32_t*)argv([1l]);

The final typecast tells the compiler to interpret

those 4 bytes as representing an unsigned
integer value.

"wmcqg" --> 77 6D 63 71 0x71636D77 —-=-> 1902341495

CS@VT Computer Organization | ©2005-2018 McQuain



" Pointer Casts Advanced Pointer Ideas 12

Suppose the pointer p points to the beginning of a memory region:

43 | 17 | 00 | A2 | 98 | BB | 0OC | 80 | F2 | DA

pJ

* (uint8 t*)p I

*(uintl6 t*)p |

* (uint32 _t*)p ]

* (uint64_t*)p | l

CS@VT Computer Organization | ©2005-2018 McQuain



