
Arrays in C 1

Computer Organization ICS@VT ©2005-2015 McQuain

Declaration of Statically-Allocated Arrays

In C, an array is simply a fixed-sized aggregation of a list of cells, each of which can hold

a single values (objects).

The number of cells in an array is called its dimension.

The number of values that are actually stored in an array is called its usage.

#define BUFFERSIZE 256

const int DICESUMS = 11;

double X[1000]; // literal constant dimension

char Buffer[BUFFERSIZE]; // define'd constant dimension

int DiceFreq[DICESUMS + 1]; // constant integer expression,

// used as dimension

int numItems = 10000; // integer variable

int List[numItems]; // NOT valid - numItems is not

// a constant

The dimension must* be a constant expression (known at compile-time).

The dimension and usage are separate values, with no association as far as the language is

concerned with the array itself.
*but see VLAs

Arrays in C 2

Computer Organization ICS@VT ©2005-2015 McQuain

Limitations

There is no way to alter the dimension of an array once it is declared.

Access to individual cells uses the same syntax as Java; however, there is no run-time

check to be sure that the specified index is actually valid.

There are no automatic aggregate operations for arrays in C.

- = does not copy the contents one array into another

- == is not supported for arrays; at least not the way you'd like…

- arrays cannot be passed by value to a function (although array names can)

When an array is passed to a function, its dimension and/or usage must generally be

passed as well... otherwise the function will have to way to determine where the array

ends.

Arrays in C 3

Computer Organization ICS@VT ©2005-2015 McQuain

Out-of-Bounds Array Indices

int A[7];

A[7] = 42;

Logically A[7] does not exist. Physically A[7] refers to the int-sized chunk of

memory immediately after A[6]. The effect of the assignment statement will be to store

the value 42 at that location: A
[
0
]

A
[
1
]

A
[
2
]

A
[
3
]

A
[
4
]

A
[
5
]

A
[
6
]

Memory ?? ?? ?? ?? ?? ?? ?? 42

Clearly this is undesirable. What actually happens as a result depends upon what this

location is being used for…

What happens when a statement uses an array index that is out of bounds?

First, there is no automatic checking of array index values at run-time (some languages do

provide for this). Consider the C code:

Arrays in C 4

Computer Organization ICS@VT ©2005-2015 McQuain

A Warning

You may see examples like this that purport to show a way to determine the dimension of

an array:

void f(int A[]) {

int dimension = sizeof(A) / sizeof(A[0]);

...

}

Be aware that this does not work if applied to an array passed to a

function, or an array that's allocated dynamically. Try it.

The sizeof() trick works if used in the same scope as the declaration of the array, in

which case it is hardly needed.

There are many fairly stupid discussions of this available online, and even in some

textbooks.

Arrays in C 5

Computer Organization ICS@VT ©2005-2015 McQuain

Memory Access Errors

Consider the possibilities. The memory location A[7] may:

- store a variable declared in your program

- store an instruction that is part of your program (unlikely on modern machines)

- not be allocated for the use of your program

In the first case, the error shown on the previous slide would cause the value of that

variable to be altered. Since there is no statement that directly assigns a value to that

variable, this effect seems very mysterious when debugging.

In the second case, if the altered instruction is ever executed it will have been replaced by

a nonsense instruction code. This will (if you are lucky) result in the system killing your

program for attempting to execute an illegal instruction.

In the third case, the result depends on the operating system you are using. Some

operating systems, such as Windows 95/98/Me do not carefully monitor memory accesses

and so your program may corrupt a value that actually belongs to another program (or

even the operating system itself). Other operating systems, such as Windows NT/2000/XP

or UNIX, will detect that a memory access violation has been attempted and suspend or

kill your program.

Arrays in C 6

Computer Organization ICS@VT ©2005-2015 McQuain

Array Initialization

int Primes[5]; // Primes[0:4] are unknown

int Evens[5] = {0, 2, 4, 6, 8}; // Evens[0:4] are known

int Odds[5] = {1, 3, 5}; // Odds[0:2] are as shown;

// rest are 0!

int Zeros[10000] = {0}; // Zeros[0:9999] are all 0

int Bads[5] = {1, 3, 5, 7, 9, 11}; // too many initializers!

Of course, for arrays of interesting sizes you'll usually initialize via a loop…

As with all variables in C, array cells are not automatically initialized when an array is

created:

Arrays in C 7

Computer Organization ICS@VT ©2005-2015 McQuain

Arrays as Parameters

#define SZ 5

void fillPrimes(int Primes[]);

int main() {

int Primes[SZ];

fillPrimes(Primes);

for (int i = 0; i < SZ; i++) {

printf("%3d:%5d\n", i, Primes[i]);

}

return 0;

}

void fillPrimes(int Primes[]) {

for (int i = 0; i < SZ; i++) {

Primes[i] = i * i + i + 41;

}

}

Arrays may be passed as parameters in function calls, and the effect is pass-by-reference:

Note parameter declaration syntax.

Pass array to fn by name.

Fn can modify array passed to it by

the caller…

Note idiomatic, but perhaps

questionable use of #define here.

Arrays in C 8

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Some Array Manipulations

#include <stdio.h>

#include <time.h> // for time()

#include <stdlib.h> // for srand(), rand()

#define SZ 10 // constant for array dimension

void fillArray(int List[], unsigned int Sz); # fn declarations

void Sort(int List[] , unsigned int Usage);

int main() {

int A[SZ]; // allocate space for array

fillArray(A, SZ); // fill array with random values

for (int i = 0; i < SZ; i++) { // print original array

printf("%3d:%5d\n", i, A[i]);

}

Sort(A, SZ); // sort the array

for (int i = 0; i < SZ; i++) { // print the sorted array

printf("%3d:%5d\n", i, A[i]);

}

return 0;

}

// more to come . . .

Arrays in C 9

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Initializing an Array

// Writes Size random integer values in [0, 1000) into List[]

//

// Pre:

// List[] has dimension >= Size

// Post:

// List[0:Size-1] have been set to random values in

// the range 0 to 999, inclusive.

//

void fillArray(int List[], unsigned int Size) {

srand((unsigned int) time(NULL)); // initialize random

// generator

for (int pos = 0; pos < Size; pos++) {

List[pos] = rand() % 1000;

}

}

// more to come . . .

Arrays in C 10

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Sorting an Array

// Uses insertionsort algorithm to put elements of List[] into

// ascending order.

//

void Sort(int List[], unsigned int Usage) {

int unsortedFront = 1;

while (unsortedFront < Usage) {

int currElement = List[unsortedFront];

int probeLocation = unsortedFront;

while (probeLocation > 0 &&

List[probeLocation-1] > currElement) {

List[probeLocation] = List[probeLocation-1];

probeLocation--;

}

List[probeLocation] = currElement;

unsortedFront++;

}

}

Arrays in C 11

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Squeezing out Odd Values

Problem: take an array of integer values and eliminate all the odd values from the array,

leaving only the even values, and keeping them in their original relative order,

but leaving no "gaps" within the array

For example, we would transform the first array below into the second:

484 501 122 777 29 24 543 204

484 122 24 204

Obviously, the algorithm must report the number of elements in the modified array, since

that will likely be smaller than the number of elements in the original array.

We also do not want to make use of a second array; that would waste memory and entail

too much extra copying of data.

Arrays in C 12

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Squeezing out Odd Values

Here's one approach.

484 501 122 777 29 24 543 204

484 122 122 777 29 24 543 204

If Leader points to an even value,

copy that value to Trailer's location

advance Trailer

Move Trailer to the first odd value.

If there isn't one, we are done.

Set Leader to the first value after

Trailer.

Whether Leader points to an even value or not, step Leader ahead one spot.

Arrays in C 13

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Squeezing out Odd Values

484 122 122 777 29 24 543 204

Whether Leader points to an odd value, just step it forward… and again…

484 122 122 777 29 24 543 204

484 122 24 777 29 24 543 204

Now Leader points to an even value, so copy it and advance Trailer and

Leader:

Arrays in C 14

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Squeezing out Odd Values

// Takes an array of integers and removes all the odd ones,

// without altering the order of any of the even values.

//

// Pre:

// List[] has dimension >= Usage

// Post:

// All the even values are listed in successive cells at the

// beginning of List[], in their original relative order.

// Returns:

// the number of even values in the list

//

unsigned int squeezeOutOdds(int List[], unsigned int Usage) {

unsigned int Trailer = 0;

// Move Trailer to first odd value, if any.

while (Trailer < Usage && List[Trailer] % 2 == 0)

++Trailer;

// Check for case there are no odd values in List[]

if (Trailer == Usage)

return Trailer;

// . . .

Arrays in C 15

Computer Organization ICS@VT ©2005-2015 McQuain

Example: Squeezing out Odd Values

unsigned int Leader = Trailer + 1;

// Walk Leader to end of List[]

while (Leader < Usage) {

// If Leader is at an even value, move it forward;

// advance Trailer

if (List[Leader] % 2 == 0) {

List[Trailer] = List[Leader];

++Trailer;

}

// Always advance Leader

++Leader;

}

// When done, Trailer is one past the final even value,

// so it equals the number of even values that are left.

return Trailer;

}

Arrays in C 16

Computer Organization ICS@VT ©2005-2015 McQuain

Variable-length Arrays

#include <stdio.h>

void F(int n, int A[n]);

int main() {

int n;

printf("Enter the size of the desired arrays: ");

scanf("%d", &n);

int A[n];

F(n, A);

return 0;

}

. . .

In C99, it is possible to declare an array whose dimension is not known at compile time:

dimension is not

known until run-time

Arrays in C 17

Computer Organization ICS@VT ©2005-2015 McQuain

Variable-length Arrays

. . .

void F(int n, int A[n]) {

int B[n];

for (int i = 0; i < n; i++) {

A[i] = i * i;

B[i] = i * i * i;

}

for (int j = 0; j < n; j++) {

printf("%3d: %5d %5d\n", j, A[j], B[j]);

}

}

When passing a variable-sized array as a parameter, the (variable) dimension and the array

declaration are associated syntactically:

space for B[] is

allocated when the

declaration is reached

(at runtime) and

deallocated when the

surrounding block is

exited

This isn't nearly as cool as it may look… although it does automate the deallocation of the

array.

