
gdb

Computer Organization I

1

CS@VT ©2005-2015 McQuain

The First Real Bug



gdb

Computer Organization I

2

CS@VT ©2005-2015 McQuain

Debugging vs Testing

Software testing is any activity aimed at evaluating an attribute or capability of a 

program and determining whether it meets its specified results

Debugging is a methodical process of finding and reducing the number of bugs, or 

defects, in a computer program …, thus making it behave as expected

All about "does it work"?

All about "why does it not work" and "what can we do about that"?

They are fundamentally different activities.

Testing can indicate the need to debug, but often provides only superficial clues 

as to the location or nature of the error.



gdb

Computer Organization I

3

CS@VT ©2005-2015 McQuain

printf() as an Aid

Perhaps the simplest approach to debugging is to add output code to the program 

in order to display the values of selected variables and indicate flow of control as 

the program executes.

This is often referred to as instrumenting the code.

- Easy to apply.

- Use preprocessor directives to enable/disable diagnostic output.

- Lets the code tell you what is actually happening, as opposed to what 

you believe is happening – psychological issues often hinder debugging.

- Can be cumbersome and difficult to "tune".

This technique is often undervalued and often overvalued.



gdb

Computer Organization I

4

CS@VT ©2005-2015 McQuain

gdb:  the GNU Debugger

gdb is a system tool that allows the user to:

- Step through the execution of a program, instruction by instruction.

- View and even modify the values of variables.

- Set breakpoints that cause the execution of a program to be halted at 

specific places in the code.

- Set watchpoints that cause the execution of a program to be halted 

whenever the value of a user-defined expression changes.

- Show a list of the active stack frames.

- Display a range of source code lines.

- Disassemble the current machine code to assembly language.

… and more.



gdb

Computer Organization I

5

CS@VT ©2005-2015 McQuain

Some gdb Resources

The Art of Debugging with GDB, DDD, and Eclipse,

N Matloff & P J Salzman, 

No Starch Press (c)2008 

ISBN 978-1-593-27174-9

Some reasonably good gdb cheatsheets:

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

http://www.yolinux.com/TUTORIALS/GDB-Commands.html

http://darkdust.net/files/GDB Cheat Sheet.pdf
http://www.yolinux.com/TUTORIALS/GDB-Commands.html


gdb

Computer Organization I

6

CS@VT ©2005-2015 McQuain

Example Program

The C source for our running example follows… it is adapted from an example by Norman 

Matloff (http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html):

#include <stdio.h>

#include <stdbool.h>

/* prime-number finding program

Will (after bugs are fixed) report a list of all primes

which are less than or equal to the user-supplied upper

bound.

This code is riddled with errors! */

#define MAXPRIMES 100

void CheckPrime(int K, bool Prime[]);

. . .



gdb

Computer Organization I

7

CS@VT ©2005-2015 McQuain

Example Program

. . .

int main() {

int N;

int UpperBound;      /* we will check all numbers up

through this one for primeness */

bool Prime[MAXPRIMES] = {0};  

/* Prime[I] will be true if I is

prime, false otherwise */

printf("enter upper bound\n");

scanf("%d", UpperBound);

Prime[2] = true;

for (N = 3; N <= UpperBound; N += 2)

CheckPrime(N, Prime);

if ( Prime[N] ) printf("%d is a prime\n",N);

return 0;

}



gdb

Computer Organization I

8

CS@VT ©2005-2015 McQuain

Example Program

. . .

void CheckPrime(int K, bool Prime[]) {

int J;

/* the plan:  see if J divides K, for all values J which

are

(a) themselves prime (no need to try J if it is 

nonprime), and

(b) less than or equal to sqrt(K) (if K has a divisor

larger than this square root, it must also have a

smaller one, so no need to check for larger ones)

*/



gdb

Computer Organization I

9

CS@VT ©2005-2015 McQuain

Example Program

. . .

J = 2;

while ( true )  {

if ( Prime[J] )

if ( K % J == 0 )  {

Prime[K] = false;

return;

}

J++;

}

/* if we get here, then there were no divisors of K, so

K must be prime */

Prime[K] = true; 

}



gdb

Computer Organization I

10

CS@VT ©2005-2015 McQuain

Compiling for Debugging

In order to take full advantage of gdb's features, you should generally:

- disable code optimizations by using –O0.

- enable the generation of extra debugging information by using –g, or better, by using 

–ggdb3.

So, in this case, I compiled the preceding source code using the command line:

gcc -o matloff1 -std=c99 -O0 -ggdb3 matloff1.c

This results in two compiler warnings, which I unwisely ignore…



gdb

Computer Organization I

11

CS@VT ©2005-2015 McQuain

Running the Program

I executed the program by typing the command matloff1.

The program prompts the user for a bound on the number of values to be checked; I entered 

the value 20.

The continuing execution of the program resulted in the following message:

Segmentation fault

This indicates a runtime error related to an impermissible access to memory… but why?



gdb

Computer Organization I

12

CS@VT ©2005-2015 McQuain

Starting gdb

Start the debugger by typing the command gdb matloff1.

gdb starts up with a copyright message and then displays a user prompt: 



gdb

Computer Organization I

13

CS@VT ©2005-2015 McQuain

Runnning the Program

Begin execution of the program by entering the run command, then respond to the user 

prompt:

Now, this gives us some information, including the address of the (machine) instruction that 

caused the error, and the function in which the error occurred.

But _IO_vfscanf() is a system function, not user code…



gdb

Computer Organization I

14

CS@VT ©2005-2015 McQuain

Backtrace

We can get more information about how we arrived at the error by using backtrace:

This shows the stack contains three stack frames at the time the error occurs, and provides 

the crucial information that:

line 23 in main() called __isoc99_scanf(), 

which called _IO_vfscanf()

It seems unlikely either of the latter functions is incorrect… what's line 23?



gdb

Computer Organization I

15

CS@VT ©2005-2015 McQuain

List

We can display the relevant source by using list:

In this case, the error should be obvious, we passed the value of UpperBound to 

scanf() instead of passing the address of UpperBound…

… and scanf() then treated that value as an address… with unpleasant results.



gdb

Computer Organization I

16

CS@VT ©2005-2015 McQuain

Kill

Before modifying the source code and rebuilding, we need to stop the running process, by 
using the kill command:



gdb

Computer Organization I

17

CS@VT ©2005-2015 McQuain

Fix the First Bug

We fix the error by inserting the address-of operator:

. . .

int main() {

. . .

scanf("%d", &UpperBound);

. . .

Now, rebuild as before and try running the program again…

Segmentation fault

Note: I opened a second terminal window to perform the rebuild and test the program 

again… that saves the time to exit and restart gdb (of course, in this case I knew in advance 

there were more bugs). 



gdb

Computer Organization I

18

CS@VT ©2005-2015 McQuain

Running the Program Again

Restart the program within gdb and see what happens:

This time we got better information because the source for matloff1.c is available.

We know:
- CheckPrime() was called with K == 3

- The error occurred in evaluating Prime[j]



gdb

Computer Organization I

19

CS@VT ©2005-2015 McQuain

List

As before, let's see what the surrounding code is:

Hm… that's somewhat informative.  Apparently J must be out of bounds.



gdb

Computer Organization I

20

CS@VT ©2005-2015 McQuain

Print

We can see the value of a variable by using the command print:

Well, Prime[] is of dimension 100, so that is certainly out of bounds… how did this 

happen?

Better take a somewhat wider look at the source… certainly "while (true)" looks a bit 

odd.



gdb

Computer Organization I

21

CS@VT ©2005-2015 McQuain

The Source

In this case, I find it easier to just switch to my text editor and see what's going on:

. . .

/* the plan:  see if J divides K, for all values J which

are

(a) themselves prime (no need to try J if it is 

nonprime), and

(b) less than or equal to sqrt(K) (if K has a divisor

larger than this square root, it must also have a

smaller one, so no need to check for larger ones)

*/   

J = 2;

while ( true )  {

if ( Prime[J] )

if ( K % J == 0 )  {

Prime[K] = false;

return;

}

J++;

}

. . .

The loop bears no resemblance to the stated plan… the code never tries to limit J to be less 

than or equal to sqrt(K).



gdb

Computer Organization I

22

CS@VT ©2005-2015 McQuain

The Problem

The loop never exits unless we have a value for 
J such that both:

- Prime[J] == true

- J divides K

J = 2;

while ( true )  {

if ( Prime[J] )

if ( K % J == 0 )  {

Prime[K] = false;

return;

}

J++;

}

. . .

But we know that J reached the value 4032.  

Why didn't the loop exit when we reached J == 3?

It must have been that Prime[3] was not true.

Examining the earlier source code, we see that Prime[3] will not have been explicitly set 

at this point.

We could fix this by assuming each K is prime until shown otherwise, and so setting 

Prime[K] to true before entering the function… 

But if K == 3 then the first prime that divides 

K would be 3 itself.



gdb

Computer Organization I

23

CS@VT ©2005-2015 McQuain

Fixing the Second Bug

. . .

/* the plan:  see if J divides K, for all values J which

are

(a) themselves prime (no need to try J if it is 

nonprime), and

(b) less than or equal to sqrt(K) (if K has a divisor

larger than this square root, it must also have a

smaller one, so no need to check for larger ones)

*/   

for ( J = 2; J * J <= K; J++ )  {

if ( Prime[J] )

if ( K % J == 0 )  {

Prime[K] = false;

return;

}

J++;

}

. . .

But it's more efficient to make the loop exit once we've examined all the necessary 
candidates for divisors of K:



gdb

Computer Organization I

24

CS@VT ©2005-2015 McQuain

Trying Again

Well, no segmentation fault… but this didn't report any primes up to 20…

What to do when we have no immediate indication of what's wrong?

It would seem useful to trace the execution of the program.



gdb

Computer Organization I

25

CS@VT ©2005-2015 McQuain

Breakpoints

gdb allows us to set breakpoints, that is positions at which execution will automatically 

halt:

Important: the displayed line of code has NOT been executed yet!



gdb

Computer Organization I

26

CS@VT ©2005-2015 McQuain

Stepping Through

gdb also allows us to step through the program one instruction at a time:

Since line 23 is a scanf() call, we must enter the input value and hit return before gdb

resumes by displaying the next instruction.



gdb

Computer Organization I

27

CS@VT ©2005-2015 McQuain

Display and More Stepping

The gdb command display is like print except that the value of the specified variable 

is shown after each step is taken:

The initial display of N makes sense (why?), as does the next.

But execution goes from line 27 to line 28 and back to line 27… that's not what we 
expected… (see the source for main()).



gdb

Computer Organization I

28

CS@VT ©2005-2015 McQuain

. . .

int main() {

. . .

for (N = 3; N <= UpperBound; N += 2) {

CheckPrime(N);

if ( Prime[N] ) printf("%d is a prime\n",N);

}

. . .

Fixing the Third Bug

Ah… missing braces around the intended body of the for loop:

BTW, this is why I suggest you ALWAYS put braces around the body of a selection or loop 

structure.



gdb

Computer Organization I

29

CS@VT ©2005-2015 McQuain

Trying Again

You might want to use the clear command to reset the breakpoint.

OK, this looks better, but we missed the prime 2 and reported that 9 and 15 are prime.

See the source code for the reason for these final bugs…


