
Intro Valgrind 

 Computer Organization II 

1 

CS@VT ©2014 McQuain 

What is Valgrind? 

 

For our purposes here, it's a front end for managing a collection of dynamic code 

analysis tools, including two complementary memory analysis tools: 

 

 Memcheck a memory error detector, aimed at errors in handling dynamic 

memory errors 

 

 SGcheck an experimental memory error detector, aimed overruns of 

arrays on the stack and global data areas 

 

I'll examine the basic use of these in the following slides. 

 

There are a number of very useful additional tools, which may be of great use to 

you in later courses. 

Valgrind Overview 



Intro Valgrind 

 Computer Organization II 

2 

CS@VT ©2014 McQuain 

Memory Management Errors 

#include <stdlib.h> 

 

void f(); 

 

int main() { 

 

   f(); 

   return 0; 

} 

 

void f() { 

 

   int* x = malloc(10 * sizeof(int)); 

   x[10] = 0; 

} 

Here's a simple C program with an obvious off-by-one access error to an array, followed 

by a memory leak: 



Intro Valgrind 

 Computer Organization II 

3 

CS@VT ©2014 McQuain 

Out-of-bounds Array Access 

Linux> valgrind --leak-check=full a1 

==30506== Memcheck, a memory error detector 

==30506== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al. 

==30506== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info 

==30506== Command: a1 

==30506==  

==30506== Invalid write of size 4 

==30506==    at 0x4004F7: f (a1.c:14) 

==30506==    by 0x4004D1: main (a1.c:7) 

==30506==  Address 0x4c28068 is 0 bytes after a block of size 40 alloc'd 

==30506==    at 0x4A069EE: malloc (vg_replace_malloc.c:270) 

==30506==    by 0x4004EA: f (a1.c:13) 

==30506==    by 0x4004D1: main (a1.c:7) 

. . .  

. . . 

void f() { 

 

   int* x = malloc(10 * sizeof(int)); 

   x[10] = 0; 

} 



Intro Valgrind 

 Computer Organization II 

4 

CS@VT ©2014 McQuain 

Memory Leak 

. . . 

==30547== HEAP SUMMARY: 

==30547==     in use at exit: 40 bytes in 1 blocks 

==30547==   total heap usage: 1 allocs, 0 frees, 40 bytes allocated 

==30547==  

==30547== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1 

==30547==    at 0x4A069EE: malloc (vg_replace_malloc.c:270) 

==30547==    by 0x4004EA: f (a1.c:13) 

==30547==    by 0x4004D1: main (a1.c:7) 

. . .  

. . . 

void f() { 

 

   int* x = malloc(10 * sizeof(int)); 

   x[10] = 0; 

} 



Intro Valgrind 

 Computer Organization II 

5 

CS@VT ©2014 McQuain 

Out-of-bounds Array Access 

. . . 

==30547== HEAP SUMMARY: 

==30547==     in use at exit: 40 bytes in 1 blocks 

==30547==   total heap usage: 1 allocs, 0 frees, 40 bytes allocated 

==30547==  

==30547== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1 

==30547==    at 0x4A069EE: malloc (vg_replace_malloc.c:270) 

==30547==    by 0x4004EA: f (a1.c:13) 

==30547==    by 0x4004D1: main (a1.c:7) 

. . .  

. . . 

void f() { 

 

   int* x = malloc(10 * sizeof(int)); 

   x[10] = 0; 

} 



Intro Valgrind 

 Computer Organization II 

6 

CS@VT ©2014 McQuain 

The following options are often very useful: 

 
--leak-check=full 

Display of details related to each leak that was detected. 

 
--show-leak-kinds=all 

Possible kinds of leaks include possible, indirect, definite, and reachable. 

 
--track-origins=yes 

Track the origins of uninitialized values that have been used. 

 
–v 

Be verbose... 

 
--log-file=filename 

Write valgrind output to specified file instead of stdout. 

 

Of course, see the valgrind man page for even more information and options. 

Some Valgrind Options 



Intro Valgrind 

 Computer Organization II 

7 

CS@VT ©2014 McQuain 

Extensive Example: Invalid writes/reads 

The following example is derived from a common project used in CS 2506. 

Linux> valgrind --leak-check=full --show-leak-kinds=all --log-file=vlog.txt -

-track-origins=yes -v disassem C3TestFiles/ref07.o stu_ref07.asm 

. . . 

==7962== Invalid write of size 1 

. . . 

==7962==    by 0x401575: main (Disassembler.c:225) 

==7962==    Address 0x51f6845 is 0 bytes after a block of size 5 alloc'd 

==7962==    at 0x4C2B974: calloc (in /usr/lib64/valgrind/vgpreload_memcheck- 

            amd64-linux.so) 

==7962==    by 0x401522: main (Disassembler.c:222) 

 

==7962==    Invalid read of size 1 

. . . 

==7962==    Address 0x51f6845 is 0 bytes after a block of size 5 alloc'd 

==7962==    at 0x4C2B974: calloc (in /usr/lib64/valgrind/vgpreload_memcheck- 

            amd64-linux.so) 

==7962==    by 0x401522: main (Disassembler.c:222) 

We see that two invalid memory accesses have been detected, each involving one byte. 



Intro Valgrind 

 Computer Organization II 

8 

CS@VT ©2014 McQuain 

Extensive Example: Invalid writes/reads 

Here are the cited lines of C source code: 

The logic error is fairly obvious: 

 
- 222:  a char array of dimension 5 is allocated and zero'd; used in the normal way, 

this should hold no more than 4 user characters, allowing room for the 

terminator 

 
- 225:  more than 4 characters are written to (and beyond the end of) the array Label 

 
- 228: since strcpy() depends on the terminator, it reads past the end of the array 

Label 

 

This error is pernicious because it did not result in any sort of runtime error (although it 

may very well have resulted in incorrect results). 

. . . 

222 char *Label = calloc(5, 1); 

. . . 

225 sprintf(Label, "%5s%02d:%7s", "V", Index, ".word"); 

. . . 

228 strcpy(Labels[Line], Label); 



Intro Valgrind 

 Computer Organization II 

9 

CS@VT ©2014 McQuain 

Extensive Example:  Uninitialized Values 

Valgrind detects a different kind of error: 

. . . 

==7962== Conditional jump or move depends on uninitialised value(s) 

. . . 

==7962==    by 0x4010AB: main (Disassembler.c:155) 

==7962==  Uninitialised value was created by a stack allocation 

==7962==    at 0x400B5D: main (Disassembler.c:40) 

Now, the source of the error in line 155 may be less clear. 

     . . . 

 39  int main(int argc, char** argv) 

 40  { 

     . . . 

155     sprintf(currLine, "%s%8s", jT->Mnemonic, Name); 

     . . . 

One relevant fact is that sprintf() depends on terminators to determine the ends of the 

two strings it prints... 



Intro Valgrind 

 Computer Organization II 

10 

CS@VT ©2014 McQuain 

Extensive Example:  Uninitialized Values 

Examining the creation of the two strings suggests where the problem may lie: 

Now, in line 149, sprintf() will not write a terminator to Name[]. 

 
Therefore, in line 155, sprintf() will not find a terminator at the correct place in 

Name[]. 

 
As for Mnemonic, we'd have to examine more code to decide if it's a problem as well. 

     . . . 

 39  int main(int argc, char** argv) 

 40  { 

        . . . 

137     JType *jT = parseJT(currLine); 

138     char Name[100]; 

        . . . 

149     sprintf(Name, "%s%02d", "L", Index); 

        . . . 

155     sprintf(currLine, "%s%8s", jT->Mnemonic, Name); 

        . . . 



Intro Valgrind 

 Computer Organization II 

11 

CS@VT ©2014 McQuain 

. . . 

==7962== 7 bytes in 1 blocks are definitely lost in loss record 1 of 26 

==7962==    at 0x4C2B974: calloc (in /usr/lib64/valgrind/vgpreload_memcheck- 

            amd64-linux.so) 

==7962==    by 0x4020B3: parseJTypeInstruction (ParseInstructions.c:178) 

==7962==    by 0x400F51: main (Disassembler.c:137) 

Extensive Example:  Memory Leak 

Valgrind also detects a number of bytes have not been properly deallocated: 

. . . 

==7962== HEAP SUMMARY: 

==7962==     in use at exit: 4,842 bytes in 331 blocks 

==7962==   total heap usage: 331 allocs, 0 frees, 4,842 bytes allocated 

==7962==  

==7962== Searching for pointers to 331 not-freed blocks 

==7962== Checked 111,584 bytes 

. . . 

Here are the details reported for one leak: 



Intro Valgrind 

 Computer Organization II 

12 

CS@VT ©2014 McQuain 

Extensive Example:  Memory Leak 

Valgrind also detects a number of bytes have not been properly deallocated: 

This one's easy to fix, with a little thought about just how we want the responsibilities to 

be factored into the code. 

        . . . 

178   char* Code = calloc(7, 1);  <--- allocates a block 

 

179 opCode = getCode(MI);       <--- leaks the block 

. . . 



Intro Valgrind 

 Computer Organization II 

13 

CS@VT ©2014 McQuain 

Extensive Example:  Leak Summary 

Here's a less than ideal leak summary: 

. . . 

==7962== LEAK SUMMARY: 

==7962==    definitely lost: 3,116 bytes in 233 blocks 

==7962==    indirectly lost: 590 bytes in 96 blocks 

==7962==      possibly lost: 0 bytes in 0 blocks 

==7962==    still reachable: 1,136 bytes in 2 blocks 

==7962==         suppressed: 0 bytes in 0 blocks 

==7962==  

==7962== ERROR SUMMARY: 116 errors from 34 contexts (suppressed: 2 from 2) 

. . . 

But with Valgrind's help, we should be able to hammer out all of the leaks. 



Intro Valgrind 

 Computer Organization II 

14 

CS@VT ©2014 McQuain 

Bibliography 

I used the following sources for the preceding notes: 

The Valgrind Documentation Release, 3.9.0.31 October 2013 

 http://www.valgrind.org/ 


