
Shell Configuration

 Computer Organization I

1

CS@VT ©2005-2014 McQuain

Environment Variables

A shell is simply a program that supplies certain services to users.

As such, a shell may take parameters whose values modify or define certain behaviors.

These parameters (or shell variables or global environment variables) typically have values

that are set in certain configuration files.

When you install Linux, or use your rlogin account, many of these parameters will have

default values determined by the system administrator or by Linux installer.

You may generally modify those default values and even define new parameters by editing

configuration files within your home directory.

Open a bash shell and enter the command $HOME… this will show the current value of

the environment variable HOME.

Shell Configuration

 Computer Organization I

2

CS@VT ©2005-2014 McQuain

The Path Variable

The environment variable that is most often encountered is the PATH variable, which

determines which directories the shell will search (and in what order) when the shell

attempts to locate programs you are attempting to execute.

We see that the default PATH for this CentOS installation contains the directories:

 /usr/lib64/qt-3.3/bin /usr/sbin

 /usr/local/bin /sbin

 /usr/bin /home/wdm/bin

 /bin /home/wdm/splint-3.1.1/bin

 /usr/local/sbin (which apparently does not exist!)

 ./

Shell Configuration

 Computer Organization I

3

CS@VT ©2005-2014 McQuain

Setting a Variable

You can change the value of a shell variable from the command line.

Let’s add the directory for one of my tools to the PATH:

Note that we can now run the user program marker without specifying the path.

But… this only resets PATH for the current shell session.

Shell Configuration

 Computer Organization I

4

CS@VT ©2005-2014 McQuain

Bash Shell Startup

When a bash shell is started, it automatically executes commands stored in certain files.

There are three kinds of shells:

 (interactive) login shells (sets values for various shell variables)

 /etc/profile a system file that only the root user can modify

 ~/.bash_profile files in your HOME directory that you can change

 ~/.bash_login

 ~/.profile

 interactive non-login shells (inherits login shell variables from files above)

 /etc/bashrc another system file

 ~/.bashrc another file in your HOME directory

 non-interactive shells (inherits login shell variables from files above)

 files named by the environment variable BASH_ENV

Shell Configuration

 Computer Organization I

5

CS@VT ©2005-2014 McQuain

Side Note: Hidden Files

If you try the ls command in your home directory, you will (probably) notice that the file

.bash_profile is not listed.

Filenames that begin with a period are hidden by default.

You can use the ls -a command will show hidden files as well as non-hidden files.

Shell Configuration

 Computer Organization I

6

CS@VT ©2005-2014 McQuain

Common Variance

When you open an interactive terminal session in Linux, the sequence described on the

preceding slide is probably NOT followed by default.

In particular, ~/.bash_profile is not executed automatically, and therefore changes you

make to it will not be effective.

There is a simple fix for the issue:

 - open a terminal session and go to Edit/Profile Preferences

 - select the Title and Command tab

 - check the box for “Run command as a login shell”

In fact, in my rlogin installation, ~/.bash_profile did not exist initially; I had to create it

with a text editor.

Shell Configuration

 Computer Organization I

7

CS@VT ©2005-2014 McQuain

~/.bash_profile

You should use ~/.bash_profile to set changes to the PATH variable because

~/.bash_profile is only executed once.

Here is a sample .bash_profile taken from Sobell:

if [-f ~/.bashrc]; then # if .bashrc exists

 # in the home directory

 source ~/.bashrc # run it

fi

PATH=$PATH:. # add working directory to the path

export PS1='[\h \W \!]\$ ' # configure the shell prompt

Normally, ~/.bashrc is invoked from another configuration file, as shown here.

See the note in Sobell regarding adding the working directory to the path; NEVER add it at

the beginning of the path!

Sobell has a good discussion of the various options for the appearance of the prompt.

Shell Configuration

 Computer Organization I

8

CS@VT ©2005-2014 McQuain

~/.bashrc

Here is a sample ~/.bashrc adapted from Sobell:

if [-f /etc/bashrc]; then # if global bashrc exists, run it

 source /etc/bashrc # note: no period in file name

fi

if [-d "$HOME/bin"] ; then # add user’s bin directory to path

 PATH="$HOME/bin:$PATH"

fi

set -o noclobber # prevent silent overwriting of files

 # (by redirection)

alias rm='rm –i' # always use interactive rm cmd

alias cp='cp –i' # and interactive cp cmd

alias recent='history | tail' # displays last few cmds run

alias ll='ls –alF'

alias commands are a convenient way to create mnemonics for specialized execution of

system commands.

Shell Configuration

 Computer Organization I

9

CS@VT ©2005-2014 McQuain

Defining Aliases

alias commands are a convenient way to create mnemonics for specialized execution of

system commands.

The syntax (for the bash shell) is:

 alias <mnemonic>='command to be run'

There are no spaces around the equal sign, and the specification of the command to be run

must be enclosed in single quotes if it contains spaces.

Shell Configuration

 Computer Organization I

10

CS@VT ©2005-2014 McQuain

Defining Aliases

alias list='ls -gAFG -t -r --time-style=long-iso'

#1017 wdm@Centos65:code> list

total 12

-rw-rw-r--. 1 3442 2014-10-23 22:34 BinaryInt.c

-rw-rw-r--. 1 816 2014-10-23 22:34 driver.c

-rw-rw-r--. 1 2183 2014-10-23 22:34 BinaryInt.h

 -A, --almost-all

 do not list implied . and ..

 -F, --classify

 append indicator (one of */=>@|) to entries

 -g like -l, but do not list owner

 -G, --no-group

 in a long listing, don’t print group names

 -r, --reverse

 reverse order while sorting

 -t sort by modification time

 --time-style=STYLE

 with -l, show times using style STYLE: full-iso, long-iso, iso, . . .

Shell Configuration

 Computer Organization I

11

CS@VT ©2005-2014 McQuain

Shell Scripting

The shell supports a built-in programming language, called a scripting language.

(Different shells support different scripting languages.)

We will explore shell scripting in detail later in the course.

For now, we'll show a couple of examples to illustrate how the bash scripting language

works.

Shell Configuration

 Computer Organization I

12

CS@VT ©2005-2014 McQuain

Functions

first_vowel() { # utility fn called by piggy()

 return `expr index "$1" aeiouAEIOU`

}

piggy() { # translates params to pig-Latin

 for x; do # iterate through params

 first_vowel $x # locate first vowel in param

 retval="$?" # save return value from first_vowel()

 if [[$retval -eq 1]]; then # vowel is at front of param

 echo -n $x"way "

 else # vowel is not at front of param

 length=`expr length "$x"`

 prefix=`expr substr "$x" 1 $((retval-1))`

 suffix=`expr substr "$x" $retval $length`

 echo -n $suffix$prefix"ay "

 fi

 done # end of for loop body

 echo # bang out a newline

 return 0

}

Shell Configuration

 Computer Organization I

13

CS@VT ©2005-2014 McQuain

Analysis

first_vowel() { # utility fn called by piggy()

 # no return type, param list

 return `expr index "$1" aeiouAEIOU`

}

. . .

first_vowel $x # call passes param; syntax like command-line invocation

. . .

retval="$?" # return value accessed as $?

Shell Configuration

 Computer Organization I

14

CS@VT ©2005-2014 McQuain

Analysis

. . .

piggy() {

 for x; do # have for-loop construct; this iterates over params

 . . .

 done # do/done pair delimit body of loop

 . . .

 . . .

 if [[$retval -eq 1]]; then # have if-then construct

 echo -n $x"way "

 else # else is optional

 length=`expr length "$x"`

 prefix=`expr substr "$x" 1 $((retval-1))`

 suffix=`expr substr "$x" $retval $length`

 echo -n $suffix$prefix"ay "

 fi # if/fi pair delimit if body

 . . .

Shell Configuration

 Computer Organization I

15

CS@VT ©2005-2014 McQuain

Adding Function to Shell

If we add the function(s) to the .bashrc file, they become available in future shell

invocations:

Of course, this is just a "joke" function...

Shell Configuration

 Computer Organization I

16

CS@VT ©2005-2014 McQuain

protect() {

 if [[$# -eq 0]]; then # check for a parameter

 echo "Invocation: protect filename"

 return 1;

 fi

 if [[! -f $1]]; then # see if it's a regular file

 echo "$1 is not a regular file."

 return 2;

 fi

 chmod g-rwx,o-rwx $1 # if so, remove all group/other access to it

 return 0

}

A More Useful Function

