UML Diagram Key

Basics
Visibility Symbols

o | Public
Protected
- | m | Private

Additional Symbols

S | Static

F | Final

SF | Static Final
C | Constructor

Association
e Stronger relationship than dependency
e An object contains another one, a one-way relationship

e Represented by a solid arrow that points in the direction of the instance being

contained by another classifier €———

Generalization
e An association representing class extension and inheritance

e Used to show that a class has a super class
e Represented by a hollow solid arrow <}——

Example Diagrams

<=zJava Class>>
(®MyClass
(default package)
© publicField: Object
< protectedrieki: Object
o privateField: Object

@ MyClass()
@ publicMethod():void
& protectedMethod():boolean

@ privateMethod():String
=zJava Class>> =zJava Class>>
(9 MyPrivateClass (& MyProtectedClass
(default package) (default package)
cMyR'ivateGass() -;;FMyR'o(ectedGass()
==lava Class== ==Java Enumeration=»=
(= Thing {3 Direction
[default package) (default package)
ostaticObject; Object %F Morth: Directian
o CONSTANT String %FEast: Direction
L STATIC_COMSTANT: String %F South: Direction
OcThing(j SFiniest: Direction
& Directian()

Want to know more?
What is UML?
e Means “Unified Modeling Language”
e Used for object-oriented programming (OOP)
e Among others, specifies:
o Methods (activities)
Objects
Interactions
User Interface
Relationships
Dependencies

O O O O O O

How the program runs

Class Diagram
e Show relationships between classes
e Allows for coherent software development
e Can look different between UML software

Classifier
e Ageneral term used for an object
e Includes (but not limited to)
o Class
o Interface
o Enumeration

Class
e Represented by a box
e An object that has information about its behavior and structure
e (Can contain information about its:

Package

Name

Fields

Methods

Classes

Interfaces

o O O O O O

Parent Class

Attribute
e Avalue associated with a classifier to describe it

Operation
e Method, function, action, or service an object can perform

Dependency
e Least formal relationship, so avoid using it
e An object depends on another one (by parameter or return type)
e Aclassifier at beginning of arrow depends on the classifier at the arrowhead
in some way
e Represented by a dotted arrow that points in the direction of the
dependency <—————

Aggregation
e A parent-child relationship
e The child can exist independently of parent
e Represented by a hollow diamond <————

Composition
e A parent-child relationship
e The child cannot exist independently of parent
e Stronger relationship than aggregation

e Represented by a filled diamond ¢——rnv———

Realization
e An association representing interface implementation

e Represented by a hollow dotted arrow o o— _

