INTEGER example

Compile time Operations Determined
by Type of Reference Variable

* As shown previously with Computer and Notebook, a
variable can refer to an object whose type is a subclass of
the variable’ s declared type

* Java is strongly typed
Object aThing = new Integer(25);

— The compiler always verifies that a variable’ s type is a
superclass of the class of every expression assigned to the
variable (e.g., class Object must include class Integer)

—/ [nteger
aThing = | :

value = 25

Operations Determined by Type of
Reference Variable (cont.)

The type of the variable determines what
operations are legal

Object aThing = new Integer(25);
The following is legal:
aThing.toString();

But this is not legal:
aThing.intValue();
Object has a toString() method, but it does not

have an intValue() method (even though Integer
does, the reference is considered of type Object)

Single inheritance in

C I aSs O bJ ect Java, Object is the

root

* Objectis the root of the class hierarchy
* Every class has Object as a superclass

* All classes inherit the methods of Object but may
override them

Override equals

* Some methods of Object il your

classes!

boolean equals(Object obj) Compares this object to its argument.

int hashCode() Returns an integer hash code value for this object.

String toString() Returns a string that textually represents the object.
Class<?> getClass() Returns a unique object that identifies the class of this object.

Operations Determined by Type of
Reference Variable (cont.)

The following method will compile,

aThing.equals(new Integer("25"));

Object has an equals method, and so does Integer
Which one is called? Why?

Why does the following generate a syntax error?
Integer aNum = aThing;

Incompatible types!

Casting in a Class Hierarchy

 Casting obtains a reference of a different, but
matching, type

e Casting does not change the object!
— It creates an anonymous reference to the object

— It te|ls the compiler, “I know what | am doing” (even if you
don’ t really know)

Integer aNum = (Integer) aThing;

* Downcast:
— Cast superclass type to subclass type
— Java checks at run time to make sure it’ s legal
— Ifit’ s not legal, it throws ClassCastException

Downcasting Example -Visual

* Integer aNum = (Integer) aThing;

variable of
type Object ——
“aThing”

variable of /

type Integer
"aNum”

